Lower Cost Carbon Fiber Precursors
9 May 2011

C. David (Dave) Warren
Field Technical Manager
Transportation Materials Research
Oak Ridge National Laboratory
P.O. Box 2009, M/S 8050
Oak Ridge, Tennessee 37831-8050
Phone: 865-574-9693
Fax: 865-574-0740
Email: WarrenCD@ORNL.GOV

This presentation does not contain any proprietary, confidential or otherwise restricted information.
Purpose: Scale-up chemical modification of textile precursors, in conjunction with an industrial partner. Identify and develop textile based precursor. Develop optimal processing parameters. Incorporate both in commercial production facilities at industrial scale.

Barriers: New precursors are needed for carbon fiber manufacturing cost reduction. They must be scaled for industry production and conversion parameters must be optimized. Lower cost fiber enable CF composite applications.

Approach:
1. Complete previous effort by scaling to the CF production line.
2. Assist CF converters with processing protocol.
3. Optimize processing protocol for improved properties.
4. Incorporate modification in CF demonstration line.

Budget:
- FY 07-10: $1139K
- FY 11: $150K

Project Start: June 2007
Project End: Sept 2011

90+% Complete
Began: January 2007 Partner: FISIPE (PT)

FISIPE uses a VA co-monomer

Guided FISIPE choosing a polymer composition and in installing the chemical bath which was installed in their pilot line facility and also in optimizing the chemical pretreatment.

FISIPE produces precursor which we evaluate to determine the optimum conversion conditions.
Textile PAN VA Co-monomer - Formulation proprietary to FISIPE - 26,600 filament tow size
Chemically treated with a proprietary solution treatment at “normal” processing temps
Oxidized and Carbonized using both the Precursor Evaluation Line and the Pilot Line

High Volume Baseline
24 MM lb/YR CF Plant
Conventional PAN Precursor
Depreciation, 0.94
Other fixed costs, 0.70
Labor, 0.81
Utilities, 1.20
Raw materials, 4.20
Total: $7.85/lb

Textile Precursor
27.5 MM lb/YR CF Plant
Depreciation, 0.60
Other fixed costs, 0.47
Labor, 0.56
Utilities, 1.03
Raw materials, 3.08
Total: $5.74/lb
Mechanical Properties – Modulus

Target Properties:
- Modulus: 172 GPA (25 MSI)

Current Properties:
- Modulus: 261 GPA (~38 MSI)

- **Commercialization Goal**
- **Program Goal**

- **Elastic Modulus (Msi)**

<table>
<thead>
<tr>
<th>Goal</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-8</td>
<td>10-29</td>
<td>1-3</td>
<td>1-6</td>
<td>1-25</td>
</tr>
<tr>
<td>3-13</td>
<td>3-17</td>
<td>3-27</td>
<td>9-18</td>
<td>10-9</td>
</tr>
<tr>
<td>3-19</td>
<td>6-25</td>
<td>7-24</td>
<td>8-17</td>
<td></td>
</tr>
</tbody>
</table>
Target Properties:
Strength: 1.72 GPA (250 KSI)

Current Properties:
Strength: 3.72 GPA (540 KSI)

Commercialization Goal

Program Goal
This Year the ability to spin circular fibers was achieved and incorporated in the production line.
Textile Precursors – What is Happening

Current work is:
1. Optimization of properties.
2. Validation and Verification of Production Line output.
3. Assistance to CF Converters to use Precursor.

FISIPE has retrofitted production line and ready to sell precursors.

FISIPE has installed a pilot scale production line to produce sample quantities of finished carbon fiber.
Purpose: Develop the lowest cost potential carbon fiber precursor while meeting program targets. Current project is in early stage development.

Barriers: New precursors are needed for carbon fiber manufacturing cost reduction. They must be scaled for industry production and conversion parameters must be optimized. Lower cost fiber enable CF composite applications.

Approach:
1. Identify high carbon content melt-processible precursors and modify/functionaize those with suitable chemicals to render precursor infusible.
2. Design and develop a reactor for functionalization and identify carbonization parameters.
3. Commercialize the technology with precursor manufacturer(s) in USA.

Budget:
- $200K FY09
- $400K FY10
- $600K FY11
- $600K FY12

Project Start: June 2009
Project End: Sept 2012

Collaborative Partnerships: Large Proprietary CRADA funded through Industrial Technologies Program
Polyolefin-based carbon fibers offer:

- Significant cost/performance benefit through
 - High carbon yield
 - Low raw material cost
 - Possibility of using recycled raw materials
 - Ease of precursor fiber handling and processibility

Compared to Other Precursors

<table>
<thead>
<tr>
<th>Precursor type</th>
<th>Yield (%)</th>
<th>$/lb (as-spun)</th>
<th>Melt-spinnable</th>
<th>Best achieved properties</th>
<th>Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theoretical</td>
<td>Practical</td>
<td></td>
<td>Strength (KSI)</td>
<td>Modulus (MSI)</td>
</tr>
<tr>
<td>Conventional PAN</td>
<td>68</td>
<td>45-50</td>
<td>>4</td>
<td>No</td>
<td>500-900</td>
</tr>
<tr>
<td>Textile PAN*</td>
<td>~ 68</td>
<td>45-50</td>
<td>1-3</td>
<td>No</td>
<td>300-400+</td>
</tr>
<tr>
<td>Lignin*</td>
<td>62-67</td>
<td>40-50</td>
<td>0.40 - 0.70</td>
<td>Yes</td>
<td>160</td>
</tr>
<tr>
<td>Polyolefin**</td>
<td>86</td>
<td>65-80</td>
<td>0.35 - 0.5</td>
<td>Yes</td>
<td>380</td>
</tr>
</tbody>
</table>

* Ongoing work
** Hexcel work (2004)

↑ High Yield Inexpensive Properties Proven At Small Scale Obstacle Addressed

80 – 120 min Oxidative Stabilization replaced by a 30 - 40 min functionalization.
Polyolefin Precursors – Cost Potential

Diagram from Harper International

<table>
<thead>
<tr>
<th>Spooling & Packaging</th>
<th>Surface Treatment</th>
<th>Carbonization/ Graphitization</th>
<th>Stabilization & Oxidation</th>
<th>Precursors</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0.61</td>
<td>$0.37</td>
<td>$2.32</td>
<td>$1.54</td>
<td>Baseline Today - $9.88</td>
</tr>
<tr>
<td>$0.41</td>
<td>$0.33</td>
<td>$1.48</td>
<td>$0.99</td>
<td>High Volume - $7.85</td>
</tr>
<tr>
<td>$0.41</td>
<td>$0.33</td>
<td>$1.25</td>
<td>$0.20</td>
<td>$3.32</td>
</tr>
<tr>
<td>$0.41</td>
<td>$0.33</td>
<td>$1.25</td>
<td>$0.10</td>
<td>$2.74</td>
</tr>
</tbody>
</table>

Less Effluents
Faster throughput
Less Incineration

High
Low

<table>
<thead>
<tr>
<th>As-Spun Fiber ($/lb)</th>
<th>Large tow CF Precursor</th>
<th>Small tow (<24k) CF Precursor</th>
<th>Textile Precursor</th>
<th>Polyolefin Precursor</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3-5</td>
<td>$4-6</td>
<td>$2-3</td>
<td>$0.50 - $0.60</td>
<td></td>
</tr>
<tr>
<td>$4-6</td>
<td>$8-12</td>
<td>$4-6</td>
<td>$0.65 - $0.90</td>
<td></td>
</tr>
<tr>
<td>$6.5-11</td>
<td>$8-12</td>
<td>$4-6</td>
<td>65 - 80%</td>
<td></td>
</tr>
<tr>
<td>85 - 120 min</td>
<td>75 -100 min</td>
<td>75 - 100 min</td>
<td>60 min **</td>
<td></td>
</tr>
</tbody>
</table>

Carbon Yield ~45% ~50% ~50% 65 - 80%
Precursor Cost ($ /lb CF) $ 6.5-11 $ 8-12 $ 4-6 $ 0.65 - $ 0.90
Stabilization 85 - 120 min 75 -100 min 75 - 100 min 60 min **
Carbonization Same Same Same Same
Materials

- During FY2009 (six months of the project) precursor fibers were produced in collaboration with a melt-spinning equipment manufacturer in USA.
 - Fibers from polyblend were successfully obtained without problem with spinnability.

Continuous fiber functionalization made operational in early FY’10

Set up semi-continuous functionalization module
Properties of Fibers from Polyolefins

<table>
<thead>
<tr>
<th>Fiber type</th>
<th>Filament Diameter (µm)</th>
<th>Max. Filament Stress (ksi)</th>
<th>Max. Modulus (Msi)</th>
<th>Ultimate elongation (%)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precursor-1</td>
<td>16</td>
<td>14</td>
<td>0.02</td>
<td>190</td>
<td>Resin-1</td>
</tr>
<tr>
<td>Precursor-2</td>
<td>16</td>
<td>20</td>
<td>0.06</td>
<td>120</td>
<td>Resin-1</td>
</tr>
<tr>
<td>Precursor-3</td>
<td>16</td>
<td>25</td>
<td>0.10</td>
<td>115</td>
<td>Resin-1</td>
</tr>
<tr>
<td>Precursor-4</td>
<td>19</td>
<td>22</td>
<td>0.15</td>
<td>100</td>
<td>Resin-2</td>
</tr>
<tr>
<td>Stabilized-1</td>
<td>21</td>
<td>10</td>
<td>0.20</td>
<td>25</td>
<td>From precursor-1</td>
</tr>
<tr>
<td>Stabilized-2</td>
<td>19</td>
<td>8</td>
<td>0.20</td>
<td>17</td>
<td>From precursor-2</td>
</tr>
<tr>
<td>Stabilized-4</td>
<td>28</td>
<td>7</td>
<td>0.20</td>
<td>12</td>
<td>From precursor-4</td>
</tr>
<tr>
<td>Carbonized-1</td>
<td>15</td>
<td>92</td>
<td>4</td>
<td>1.6</td>
<td>Difficult to process under tension</td>
</tr>
<tr>
<td>Carbonized-4</td>
<td>15</td>
<td>160</td>
<td>15</td>
<td>1.1</td>
<td>Carbonized under specific conditions</td>
</tr>
</tbody>
</table>

Met Sept 2010 milestone: 15 Msi modulus and 150 ksi strength in polyolefin-based CF
Challenges in functionalization

Figure (a) Mapping of elemental S on the fiber cross-sections during EDS study in a scanning electron microscope (SEM) and quantitative linescan of elemental S across the filament diameter (inset) and (b) carbonized filaments from such stabilized fibers with no core or weak amorphous core.

- Hollow cores in many of the fibers cause weak mechanical properties.
- Optimal temperature range for accelerated functionalization of LLDPE fibers is identified.
- Degree of functionalization is critical for CF properties.
- Smaller diameter filaments are being studied now.
• GATE Milestone FY’09: Spin modified polyolefin-based filaments and demonstrate conversion via accelerated sulfonation route. **Completed**
 - We have demonstrated a functionalization time (<60 min) that is significantly less than the residence time for prior work which produced carbonized fibers.
 - A series of precursor fiber has been spun and characterized.
 - Carbon yield as high as 70% were obtained from the stabilized fibers.

Gate Milestone FY’10: Meet initial minimum properties
 - 150 KSI Strength **Completed**
 - 15 MSI Modulus

Gate Milestone FY’11: Meet minimum properties
 - 200 KSI Strength
 - 20 MSI Modulus
Future Goals

- To eliminate inter-filament bonding problem, which has been partially addressed.
- To obtain homogeneous sulfonated fiber without core in carbonized fiber (can be controlled by precursor type and morphology)
- To meet FY’11 milestone of 200 ksi strength and 20 Msi modulus.
- It is anticipated that at the end of FY’12 researchers will be able to demonstrate target properties (250 KSI and 25 MSI).
Purpose: Develop the lowest cost potential carbon fiber precursor from a renewable resource. It has never been done achieving moderate properties.

Barriers: Three minimum criteria for process development work on a lignin material:
1. Meets the purity specifications for melt spinning
2. Can be readily melt spun into precursor fibers 10 µm in diameter
3. Is available in the quantities necessary (kilograms)

Approach:
1. Identify appropriate lignin chemistry, purity levels and co-polymer compositions.
2. Develop the capability to melt spin or solution spin the precursor yielding a handleable fiber.
3. Develop the conversion protocol for any potential formulations.

Budget: $900K FY11

(On hold pending program direction)

Project Start: June 2004
Project End: TBD

Collaborative Partnerships: ITP funded collaborative projects for developing other lignin fiber applications.
Only one lignin material meets these three criteria: the Alcell™ hardwood lignin furnished by “Lignol Innovations,” Vancouver, Canada (operating pilot scale biorefinery).

- Produced by “Repap Enterprises” 20 years ago! (120 tons in cold storage)
- Produced through Organosolv™ pulping of waste hardwood for paper manufacture
- Not produced with carbon fiber in mind!
- Mainstay of lignin carbon fiber project for last 3 years,
- Chemistry of the Alcell lignin not suitable for production of carbon fiber meeting the target mechanical properties for automotive lightweighting. (but is suitable for carbon fiber for other applications)

Mechanical Properties of Alcell Hardwood Lignin-based Carbon Fiber

- **Tensile Strength**: 155 Ksi (62% of Target 250 Ksi)
- **Modulus**: 10-12 Msi (40-48% of Target 25 Msi)

Missed October Milestone (150 Ksi/15 Msi): Revised Plan Being Developed

* 10 kg sample of high purity, organosolv-pulped softwood lignin material received from Lignol Innovations on February 8. This is probably the first organosolv-pulped softwood lignin produced worldwide, at least in significant quantity. Evaluation pending.
Does this mean that the target carbon fiber properties for automotive use cannot be obtained with a lignin-based system? NO!!

It means that although we have developed some understanding of lignin chemistry as it relates to carbon fiber production, we still have much more to learn about what is a complex system, especially the role of lignin chemistry and how to tailor it for carbon fiber production, and the fundamental mechanisms by which lignin fiber crosslinks (stabilizes) and carbonizes.

Note: During the development of PAN-based carbon fibers, it took roughly ten years to reach the engineering properties achieved to date for lignin-based carbon fiber!

Path Forward:

The overall path forward to reach target engineering properties is summarized in the next slide. Main thrust: Understand the Chemistry.
Path Forward – Lignin Chemistry

Objective: Obtain both the melt spinnability of organosolv-pulped hardwood lignin and the crosslinking characteristics of Kraft-pulped softwood lignin in a single lignin material.

<table>
<thead>
<tr>
<th>Lignin Chemistry</th>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organosolv-pulped, switchgrass lignins. Isolation conditions. Tailoring of chemistry. Deconstruction-reconstruction: synthesis of more linear and polyaromatic derivatives.</td>
<td></td>
</tr>
<tr>
<td>University of Tennessee Knoxville, TN (Tim Rials, Joe Bozell, Darren Baker)</td>
<td></td>
</tr>
<tr>
<td>Contract for research work pending</td>
<td></td>
</tr>
<tr>
<td>Kraft-pulped, soft and hardwood lignins. Isolation conditions. Tailoring of chemistry. Solid state nmr, Raman, and XPS spectroscopy studies: chemistry of stabilization and carbonization.</td>
<td></td>
</tr>
<tr>
<td>IPST at GaTech Atlanta, GA (Art Ragauskas, Yunqiao Pu)</td>
<td></td>
</tr>
<tr>
<td>Exploratory (gratis) work implemented Dec’10. Funding to be determined</td>
<td></td>
</tr>
<tr>
<td>Kraft, organosolv, and steam-explored lignins. Fundamental studies of thermotropic liquid crystalline phase behavior of lignin; relationship to melt spinning and carbon fiber properties.</td>
<td></td>
</tr>
<tr>
<td>VaTech Blacksburg, VA (Wolfgang Glasser, Scott Rennecker, Justin Barone)</td>
<td></td>
</tr>
<tr>
<td>Joint research proposal submitted to Sun Grant Program Jan’11</td>
<td></td>
</tr>
<tr>
<td>Kraft-pulped, soft and hardwood lignins. Tailoring of properties through control of pulping and Lignoboost™ isolation conditions; enhancement of molecular weight, Tg, Tm.</td>
<td></td>
</tr>
<tr>
<td>Innventia Stockholm, Sweden (Peter Axegard, Elisabeth Sjoholm)</td>
<td></td>
</tr>
<tr>
<td>High purity Kraft softwood lignin received Dec’10. Evaluation underway</td>
<td></td>
</tr>
<tr>
<td>Organosolv-pulped, hard and softwood lignins. Tailoring of properties through control of pulping and isolation conditions; enhancement of molecular weight, Tg, Tm.</td>
<td></td>
</tr>
<tr>
<td>Ligniol Innovations Burnaby, BC, Canada (Ken Pye, Mikhail Balakshin)</td>
<td></td>
</tr>
<tr>
<td>“Alcell” hardwood lignin mainstay of project since 2007. High purity organosolv-pulped softwood lignin received Feb’11. Evaluation pending</td>
<td></td>
</tr>
<tr>
<td>Kraft-pulped, softwood lignin. Tailoring of properties through control of pulping and electrolytic isolation conditions; enhancement of molecular weight, Tg, Tm.</td>
<td></td>
</tr>
<tr>
<td>Kruger Wayagamack Trois Rivieres, ON, Canada (Jessica Charland Labonte)</td>
<td></td>
</tr>
<tr>
<td>1st sample of electrolytically isolated Kraft softwood lignin received Dec’10. High ash content and unsuitable. Kruger refining process.</td>
<td></td>
</tr>
<tr>
<td>Switchgrass lignins. Genetic modification of lignin chemistry through manipulation of S/G ratio (ratio of syringyl to guaacyl units). Long-term research.</td>
<td></td>
</tr>
<tr>
<td>ORNL-BESC and Noble Foundation</td>
<td></td>
</tr>
<tr>
<td>Long-term research to be negotiated.</td>
<td></td>
</tr>
</tbody>
</table>
High Melt Spinning Speeds Consistently Demonstrated

- Sustained melt spinning of lignin fiber of target diameter (10 µm) consistently demonstrated at 1500 meters/minute, the maximum speed of the winder on the lab scale equipment
- Both Kraft and Organosolv-pulped lignins (hardwood)
- Almost 3-times speed of commercial mesophase pitch-based fibers; almost 4-times commercial wet spinning speed of PAN-based fibers
- Much higher melt spinning speeds appear within reach; e.g., 5000 meters/minute with appropriate winding equipment

Other Efforts with Lignin
- Rigid, High-Temperature Insulation for Si Production Furnaces
- Utilization of Lignin-Based Carbon Fiber for Electrical Energy Storage
- Manufacture of Nanoporous Carbons for Ultra (Super) Capacitor Applications
- HVAC Systems with Energy-efficient CO₂ and VOC Capture
Joint Project between Vehicle Technologies and Hydrogen Storage Team

Purpose: Build off the FISIPE project to develop a low cost, high volume, PAN-MA precursor that preserves high volume production economics but yields a higher performing fiber. (600-750 KSI)

Barriers: Addresses the need for higher performance low cost fiber for hydrogen storage tanks and energy management structures of automobiles.

Approach:
1. Identify candidate PAN-MA resins.
2. Determine fiber spinning parameters.
3. Determine the production protocol.

Budget:
- $300K FY11
- $600K FY12
- $300K FY13

Project End: June 2013

Partnerships: FISIPE, 110% Cost Share
What is the difference between making aerospace and industrial grade carbon fiber?

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Industrial Grade</th>
<th>Aerospace Grade</th>
<th>Cost Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tow Size</td>
<td>12-80K Filaments</td>
<td>1-12K Filaments</td>
<td>Less material throughput</td>
</tr>
<tr>
<td>Precursor Content</td>
<td>< 92% AN, MA or VA</td>
<td>> 92% AN, MA</td>
<td>Little on raw material; slower oxidation</td>
</tr>
<tr>
<td>Precursor purity</td>
<td>Can tolerate more impurity</td>
<td>Controls UTS</td>
<td>Slower spinning speed</td>
</tr>
<tr>
<td>Oxidation</td>
<td>Quicker due to lower AN</td>
<td>Slower due to higher AN</td>
<td>Time is money</td>
</tr>
<tr>
<td>Carbonization</td>
<td>Lower Temp</td>
<td>Sometimes Higher Temp</td>
<td>Small impact</td>
</tr>
<tr>
<td>Surface treatment</td>
<td>Same but utility affected</td>
<td>Same</td>
<td>None but Load Transfer affects amount of fiber needed</td>
</tr>
<tr>
<td>Packaging</td>
<td>Spooled</td>
<td>Small Spools</td>
<td>More Handling</td>
</tr>
<tr>
<td>Certification</td>
<td>None</td>
<td>Significant</td>
<td>Expensive; Prevents incremental Improvements.</td>
</tr>
</tbody>
</table>

Essentially the same process with slightly different starting materials. Not captured is the fact the CF manufacturers are specialty material makers, not high volume.
What is the difference between making aerospace and industrial grade carbon fiber?

An higher performance fiber during production has:
1. Less material throughput (smaller tow size).
2. Requires more care in spinning (to get round fibers).
3. Spends longer in oxidation (affects lbs/hr production).
4. And requires higher temperature carbonization (energy $).
Textile PAN that is MA-based

1. Adapting high speed processes for higher AN concentration.
2. Adapting high speed processes to increase precursor purity (minimize defects).
3. Spinning of round fibers (air gap spinning).
4. Improving consistency, fiber to fiber and along fibers without sacrificing speed.

Target Properties:
Strength: 1.72 GPA (250 KSI)

Current Properties:
Strength: 3.72 GPA (540 KSI)

Done with VA Comonomer

<table>
<thead>
<tr>
<th>Program Goal</th>
<th>Commercialization Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>2008</td>
</tr>
<tr>
<td>Goal</td>
<td>1-6</td>
</tr>
<tr>
<td>2007</td>
<td>2008</td>
</tr>
</tbody>
</table>