SCS ENERGY

Biogas From Municipal WWTPs Fuel Cells Viewed as a Value Proposition

Biogas and Fuel Cells Workshop National Renewable Energy Laboratory Golden, Colorado June 12, 2012

WWTP Anaerobic Digestion

- Common method of processing sludge to reduce volume of solids & volatile content
- Reduces sludge disposal cost & increases outlets for disposal
- Since motivation is disposal rather than digester gas (DG) production, the DG is available at no cost
- This is unlike many other organic waste digestion facilities, where the energy project must bear cost of the digester(s)

WWTP Anaerobic Digestion

- WWTP anaerobic digesters require heat
- Typically a portion of the DG is used to produce steam or hot water to provide the heat
- The heat required varies seasonally, diurnally, and by climate
- Digester heating can consume up to 40% of the DG

WWTP Anaerobic Digestion

- Ways to increase DG production:
 - Inject fats, oils (vegetable) & grease into digester
 - Add processed food waste into digester
- Ways to conserve DG produced:
 - Use natural gas instead of DG for digester heat
 - Substitute another solid or liquid biofuel or biomass as the fuel for digester heat
 - Add solar hot water heating of the digesters
 - Use waste heat from on-site power generation

Beneficial Uses of DG

- Electric power generation by fuel cells, reciprocating engines, microturbines or combustion turbines
- Direct-use as a natural gas replacement at a nearby industrial, institutional or commercial natural gas consumer
- Conversion to pipeline quality gas
- Conversion to CNG/LNG for use as vehicle fuel

Why Fuel Cells?

- The other uses represent strong competition, many WWTPs already have some form of power generation
- Advantages of fuel cells are:
 - Much better heat rate (more efficient)
 - Ultra-low emissions
 - Minimal operator attention
 - Can be deployed in small incremental capacities

Typical Heat Rates of Power Generation Technologies

Technology	Heat Rate
rechnology	(Btu/kWh)
Reciprocating Engine	9,500 to 10,500
Microturbine	11,500 to 13,000
Combustion Turbine	11,000 to 12,300
Fuel Cell	7,850

Typical Air Emissions of Power Generation Technologies

	Air Pollutant		
Technology	(lb/MWh)		
	NOx	CO	
Reciprocating Engine	1.51	2.52	
Combustion Turbine	0.83	3.45	
Microturbine	0.17	0.29	
Fuel Cell	0.0001	0.0015	

SCS ENERGY

Disadvantages

- Fuel cells require advanced fuel cleanup
- High capital cost (though grants or other incentives may be available)

WWTP DG Project Experience

SCS has completed three WWTP fuel cell projects:

– Palmdale, CA – 250 kW (start-up 9/2004)

- Santa Barbara, CA 500 kW (start-up 11/2004)
- Point Loma, CA 300 kW (start-up 3/2012)

Palmdale & Santa Barbara Projects

Fuel pressurization

 Gas treatment removes:

– Moisture

- VOCs

– Sulfur compounds

Inlet Gas Quality

Gas Constituent	Percent
Methane	62
Carbon Dioxide	37.5
Nitrogen	0.4
Oxygen	0.1

SCS ENERGY

Point Loma Project

Inlet Gas Quality

Receives gas from a plant that converts DG into pipeline quality gas
Provides power for the gas conversion plant

Gas Constituent	Percent
Methane	99.4
Carbon Dioxide	0.5
Nitrogen	0.1
Oxygen	Nil

SCS ENERGY

Project Capital Costs

- Palmdale (less fuel cell)
 \$680,000 (\$2,720/kW)
- Santa Barbara (less fuel cell) \$1,150,000 (\$2,300/kW)
- Point Loma More difficult to breakout since the fuel cell uses only 38 scfm of the 580 scfm of product gas produced. On a ratio basis the fuel skid) cost would be \$1,750/kW

Summary

- Other high-value uses compete for WWTP DG
- Other power generation technologies are less costly
- Pretreated DG costs less than natural gas; hence WWTP DG projects are more cost effective than natural gas fuel cell projects
- Currently a niche market where grants are available or air emission limitations make necessary