Carbon/Sulfur Nanocomposites and Additives for High-Energy Lithium Sulfur Batteries

Chengdu Liang
Oak Ridge National Laboratory
Project ID: es105


Contributors:
Nancy Dudney and Jane Howe

“This presentation does not contain any proprietary, confidential, or otherwise restricted information”
Overview

- **Timeline**
  - Start June, 2010

- **Technical barriers for EV and PHEV**
  - Low energy density
  - High cost of materials and processing

- **Budget**
  - $220k FY10
  - $350k FY11

- **Partners**
  - Oak Ridge National Laboratory
  - Center for Nanophase Materials Sciences, ORNL
  - High Temperature Materials Lab, ORNL
    - In situ SEM
Objectives and Relevance

• Objectives:
  – Improve the utilization of sulfur active material by creating intimate contact of insulating sulfur with electronic conductors
  – Prolong the cycle-life of Li-S batteries based on C-S nanocomposites via retaining the S at the cathode through adsorption
  – Explore electrolyte compositions to facilitate the reversibility of Li$_2$S formation

• Relevance:
  – Addresses the low energy density and cost barriers for EV and PHEV batteries by enabling the Li-S battery technology
### Milestones

<table>
<thead>
<tr>
<th>Milestones</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Confirm the earlier observation of long cycle life in half cells and expand the synthesis of sulfur/carbon composite materials of various sulfur loading</td>
<td>Sep, 2010 ✔</td>
</tr>
<tr>
<td>2. Compare the performance for different concentrations of additives to the electrolyte</td>
<td>Jan, 2011 ✔</td>
</tr>
<tr>
<td>3. Investigate additives to the cathode, including catalysts and alternative sulfur compounds</td>
<td>Sep, 2011</td>
</tr>
<tr>
<td>4. Design new liquid electrolytes, considering both poor/good solvents for Li polysulfides</td>
<td>Sep, 2011</td>
</tr>
</tbody>
</table>
Approach to improve performance is three-fold.

Goal: Understand and overcome the obstacles of cycling the Li-S battery

Retain S at the cathode

- C/S composites
- Electrolytes & additives
- Li-metal anode

Enablers:
- Advanced synthesis
- In situ SEM
- Electrochemical characterization

Reverse Li$_2$S formation

Heal the damaged Li anode

longevity of cycle-life
Technical Progress – next 11 slides. Activated templated carbon gives well controlled porosity for sulfur host.

- **C/S composites by using bimodal porous carbon**
  - Physical confinement of S in < 2nm pores
  - Electronic contact of S
  - Adsorption of polysulfides

Micropores (<2nm): host site for S
Mesopores (2-50 nm): path for Li⁺ transport
Sulfur fills microporosity of the templated carbon. Loading can be adjusted.

**Three-step Synthesis of Carbon/Sulfur Composite**

1. Soft-template synthesis of mesoporous carbon
2. KOH activation
3. Sulfur infiltration
Composite is tailored with sulfur loading.

**Pore size distribution**

- **Cumulated pore volume**

**Pore Volume VS Sulfur Loading**

**TGA analysis of Sulfur Loading**

- Sulfur content (wt.%)
Cycling performance (without electrolytes additives) is greatly improved by nano-engineered carbon host which retains sulfur.

**Pore size effect**

- bimodal porous carbon
- mesoporous carbon
- microporous carbon

**Loading effect**

- 25%
- 40%
- 50%

Note: specific capacity is per gram sulfur. Theoretical is 1675 mAh/g.
Electrolyte additives can reverse Li$_2$S formation, improving cycle life of Li/S half-cells.

Polymerization of electrolytes after 10 cycles

- **Traditional approach:** Avoid the formation of Li$_2$S
- **Our approach:** Allow the formation of Li$_2$S and make it reversible through a catalytic process

- Additives improve the reversibility of Li$_2$S formation
- The polymerization of the electrolytes plays an important role on the cyclability of Li-S cells
LiBr additive alters and stabilizes shape of voltage curves.
Possible mechanism for reverse shuttle reaction.

### Discharging

\[
\begin{align*}
S_8 &\quad + e & \rightarrow & \quad S_{Hx}^{2-} &\quad + e & \rightarrow & \quad S_{Lx}^- \\
\cdot S_{Lx}^- &\quad + e & \rightarrow & \quad S_{Lx}^{2-} &\quad + e & \rightarrow & \quad S_{1,2}^{2-} \\
\end{align*}
\]

\(Hx=6,8\quad Lx=2,3,4\)

### Charging

\[
\begin{align*}
S_{1,2}^{2-} &\quad - e & \rightarrow & \quad S_{Lx}^{2-} &\quad - e & \rightarrow & \quad S_{Lx}^- \\
\cdot S_{Lx}^- &\quad - e & \rightarrow & \quad S_{Hx}^{2-} &\quad - e & \rightarrow & \quad S_8 \\
\end{align*}
\]

\(Hx=6,8\quad Lx=2,3,4\)

\[\text{Additives create additional reactions that reverse the formations of Li}_2\text{S.}\]
Bench-top demonstration gives further evidence that LiBr catalyzes reversibility of Li$_2$S formation

In the charging cycle:

\[
\text{LiBr} \rightarrow \text{Br}_2 \text{ (cathode)} + \text{Li} \text{ (anode)}
\]

Electrochemically generated Br$_2$ proceeds to the following chemical reaction

\[
\text{Br}_2 \text{ (liquid)} + \text{Li}_2\text{S} \text{ (solid)} \rightarrow \text{Li}_2\text{S}_x \text{ (solution)} + \text{LiBr} \text{ (solution)}
\]

This reaction returns the Li$_2$S solid back to solution and accelerates the electrochemical reaction, therefore catalyzing the reversibility of Li$_2$S formation.
A major drawback of LiBr additive is severe corrosion of cell parts. 

Corrosion of stainless steel parts

Corrosion of aluminum current collector

Use carbon to replace all metal parts could be the solution.
Emerging concerns of electrolyte compatibility need to be addressed.

Polymerization and the carbonization of electrolyte could cause problems for long-term cyclability.

Need further investigation of electrolyte composition.
Future work

- Explore other electrolyte additives and compositions to catalyze the reversible formation of Li$_2$S
- Optimize the carbon/sulfur composites to retain sulfur at the cathode
- Develop a mechanism to heal the damaged Li metal anode
- Seek alternative solutions for stable anode in the Li/S system
Summary

- **Relevance:** Enabling Li-S battery chemistry has the potential to improve the energy density and reduce the material cost for EV and PHEV batteries

- **Approach:**
  - carbon-sulfur nano-composites retain sulfur during the battery cycling while imparting a high electronic conductivity to the insulating sulfur.
  - electrolyte additives improve the cyclability of Li-S batteries via a new reverse shuttle mechanism

- **Accomplishment and progress:**
  - Synthesis of hierarchically porous carbon for composite electrode
  - Carbon-sulfur composites with various sulfur loading and cycling
  - Electrolyte additives reverse the formation of Li$_2$S
  - Corrosion issues with electrolyte additives have been identified

- **Future work:**
  - Optimize the carbon-sulfur composites for good utilization and long cycle life
  - Explore battery chemistry for less corrosive electrolyte additives
  - Investigate possible anode materials that match the sulfur cathode
Technical Back-Up slides
Solvents

- Dimethoxyethane (DME)
- 1,3-dioxolane (DOL)
- Trioxane
Challenges for Li-S Battery

- Intrinsic sulfur migration: liquid phase diffusion
- Irreversible Li$_2$S formation: both cathode and anode
- Poor Li anode cyclability: corrosion/ Li$_2$S deposition/ dendrites

Cathode: $S_8 \rightleftharpoons Li_2S_8 \rightleftharpoons Li_2S_6 \rightleftharpoons Li_2S_4 \rightleftharpoons Li_2S_2 \times$ Li$_2$S

Anode: Li $\rightleftharpoons$ Li$^+$

Charge: 2.4 V  
Discharge: 1.8 V

S migration through diffusion

Insoluble solid / irreversible deposition
Why Li/S can’t cycle long?

Polysulfide Shuttle

S

S

S

S

Li

S

S

S

Li

- Self-discharge
- Capacity fading
- Cell resistance increase
- Poor cyclability

- Passivate Li anode
- Decrease the diffusivity of ions
  - Gel electrolytes
  - Solid electrolytes
- Physically absorb S
  - High surface area carbons
  - Conducting polymers
- Chemically immobilize S
  - S-polymers
  - S-salts

Li-S Cell Has a Short Cycle-Life

Detrimental deposition of Li$_2$S:
- Increase of cell resistance
- Decrease of cell capacity