The Synthesis and Characterization of Substituted Olivines and Layered Manganese Oxides

M. Stanley Whittingham
State University of New York at Binghamton
June 7th, 2010

Project ID # ES050

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Overview

Timeline
• Project start date: 06-01-2008
• Project end date: 12-31-2011
• Percent complete: Continuing

Barriers
• Barriers addressed
 – Lower-cost,
 – Higher power,
 – Higher capacity and
 – Abuse-tolerant safer cathodes

Budget
• Total project funding
 – DOE share: 100% $
 – Contractor share: Personnel
• Funding received
 – FY09: 265k$
 – FT10: 294k$
• Funding requested
 – FY11: 340k$

Partners
• SUNY Stony Brook, LBNL, BNL, NREL, ORNL, Georgia Tech.
• Primet, and other companies
Objectives of Work

• The primary objectives of our work are to find:
 – Lower-cost and higher capacity cathodes, exceeding 200 Ah/kg (lab theoretical).
 – High rate PHEV compatible cathodes
 – Both of the above are to be based on environmentally benign materials
Milestones

a) Determine the optimum composition of LiNi$_{y}$Mn$_{y}$Co$_{1-2y}$O$_2$ for PHEV applications. (extended to Sep. 10)
 • Go

b) Evaluate phosphate structures with varying morphologies and dopants, containing Fe and/or Mn, and compare with optimum LiFePO$_4$. (Sep. 10)
 • Go

c) Identify materials that can undergo more than one electron per redox center. (Sep. 10)
 • New Project getting underway
Approach to Improved Cathodes

• Place emphasis on low cost materials,
 – Synthesize by practical approaches
 – Structurally characterize, including defects and morphology
 – Electrochemically evaluate in a range of cell configurations

 – Modified layered dioxides
 • What is role of other transition metals?
 • Minimize expensive components, such as cobalt.

 – Modified transition metal phosphates
 • Determine role of substituent cation on morphology and capacity in olivines
 • Find new classes of phosphates with a higher storage capacity
Technical Accomplishments:
Barriers being Addressed

Lower-cost, higher power, higher-capacity and abuse-tolerant safer cathodes

• Ultimate capability of the MnO₂ and NiO₂ lattice
 – What is optimum Li(MnNiCo)O₂ composition
 • Is 442 superior to 333?
 – Need to increase capacity to 200 Ah/kg at C rate
 • Must cell voltage be reduced to increase capacity?
 – Need to increase rate capability
 • Is it really lower than Olivine phase?

• Beyond Olivines
 – Ideal olivine particle size and morphology
 • Is a nanostructure, like the SONY tin anode, the answer? – Yes – 2009
 • Exact reason for role of 5% substitution of Mg or V not understood
 – > 200 Ah/kg from phosphate-type structures
 • Must vanadium be involved?
Optimum Composition in LiMO$_2$

- **What is maximum Mn in Li(Ni$_y$Mn$_z$Co$_{1-y-z}$)O$_2$?**
 - Prior year results showed that
 - Maximum Mn is 0.5 in lithium stoichiometric material
 - Electrochemistry is good, but
 - Lower rate and capacity than LiNi$_{0.4}$Mn$_{0.4}$Co$_{0.2}$O$_2$
 - Similar capacity to LiNi$_{0.45}$Mn$_{0.45}$Co$_{0.1}$O$_2$
 - Rate suffers for Mn > 0.5 in lithium-rich materials

- **What is “theoretical” capacity for LiNi$_y$Mn$_y$Co$_{1-2y}$O$_2$?**
 - Can 200 Ah/kg be achieved with present electrolytes?
What is Theoretical Capacity of LiNi$_y$Mn$_y$Co$_{1-2y}$O$_2$?

- Maximum capacity is:
 - 180 Ah/kg for a 4.3 volt cut-off on charging
 - 200 Ah/kg for a 4.4 volt cut-off on charging
 - But, all cells show a 1st cycle loss of 10-15 Ah/kg
 - Thus, theoretical capacity of over 220 Ah/kg needed for 200 Ah/kg practical
 - Need higher voltage electrolyte, or higher nickel content to lower voltage
What is Power Capability of LiNi$_y$Mn$_y$Co$_{1-2y}$O$_2$?

- 442 and 333 have comparable power
 - 550 and 992 significantly lower
- Capacity increases with charging voltage
 - Fade rate increases with charging voltage
- Can power capability be improved?
 - Initial tests at NREL say yes

C rate: 0.33 2.0 0.67 3.3 0.33
Does LiNi$_{y}$Mn$_{y}$Co$_{1-2y}$O$_2$ Have Power Capability - Yes

- Binder-free test of LiNi$_{0.4}$Mn$_{0.4}$Co$_{0.2}$O$_2$
 - Shows high rate capability
- Thus, material has inherent power capability

Binghamton Material

Tested at NREL by C. Ban and A. Dillon

2.35mg (90% 442, at least 10%PCNT)
Solid Solution Behavior of LiFePO$_4$ gives higher capacity and rate

- Substituting LiFePO$_4$ gives nanostructure
 - LiFeP$_{1-y}$V$_y$O$_4$ has highest capacity at PHEV rates (2009 data)
- Study underway to determine how substitution impacts properties
 - Morphology vs defects (strain); optimum substitution level
- Initial data suggest substitution on Li, Fe and P sites possible

3 µm with 50 nm crystallites
200 Ah/kg Capacity Cathodes: >1 Li/M

- Several materials known to react with more than 1 lithium
- Dc to dc converters can handle voltage differences
- Search for new structures
Higher Capacity Cathodes: >1 Li/M

- Mn and Fe pyrophosphates
 - $\text{Li}_2(\text{FeMn})\text{P}_2\text{O}_7$ formed for range of Fe and Mn content
 - Pure phases formed for first time
 - Capacity is directly related to Fe content
 - Not yet able to remove 2nd lithium (e.g. $\text{Mn}^{4+}\text{P}_2\text{O}_7$)
Higher Capacity Cathodes: >1 Li/M

- Attempted formation of \(\text{Li}_2(\text{MnFeV})\text{P}_2\text{O}_7 \)
 - Electrochemical evaluation of “\(\text{Li}_2\text{VP}_2\text{O}_7 \)” underway
 - Two lithium can be cycled
 - X-rays at 1, 2, 3 and 4 show crystalline material
Collaboration and Coordination with other Institutions

• The layered oxides
 – C. Grey (SUNY Stony Brook) Ion ordering in LiMO₂
 – M. Doeff (LBNL) Al substitution in LiMO₂
 – A. Dillon (NREL) High rate evaluation of LiNi₀.₄Mn₀.₄Co₀.₂O₂
 – S. V. Kalinin (ORNL) Scanning probe microscopy of LiₓMO₂
 – F. Alamgir (Georgia Tech.) in-situ XAS of LiₓMO₂ at BNL

• The olivines
 – C. S. Wang (U. Maryland) Synthesis of single-phase LiFeP₁₋₇V₇PO₄
 – G. Ceder (MIT) Mechanism of olivine reaction
 – Primet (Ithaca) Electrochemical evaluation of nano-scissored material
Future Work

• **LiMO$_2$**
 - Determine inherent rate capability of LiMO$_2$
 • Work with A. Dillon and C. Ban of NREL
 - Understand what controls voltage of LiMO$_2$
 • Reduce by say 0.1 volts to increase capacity and stability/lifetime
 • 200 Ah/kg goal at 1C rate

• **Phosphates**
 - Determine composition range of single-phase LiFeP$_{1-y}$V$_y$PO$_4$
 - Understand role of substituents on reaction rate

• **2-Electron Materials**
 - Find materials that can reach 200 – 250 Ah/kg at 1C rate
Summary

- **LiMO$_2$** - LiMn$_{0.40}$Ni$_{0.40}$Co$_{0.20}$O$_2$ may be optimum composition
 - 200 Ah/kg can be obtained for charging voltages over 4.4 volts
 - 1st cycle loss will dictate higher charging voltage
 - Need to modify voltage profile to attain 200 Ah/kg with present electrolytes
 - Collaborative work with NREL shows that LiMO$_2$ has inherent high rate

- **Olivine – LiFePO$_4$**
 - Work underway to understand positive role of substituents
 - Will be used as model for optimizing other materials

- **New compounds identified with greater than 1e per redox center**
 - Vanadium compounds showing most promise
 - Will be used to show proof of concept

- **Technology transfer underway**
 - Students in battery companies and at BNL, NREL and PNNL
 - Publications to transfer knowledge