Super Truck Program: Vehicle Project Review

Recovery Act – Class 8 Truck Freight Efficiency Improvement Project

PI: Derek Rotz (Vehicle); Kevin Sisken (Engine)

Presenter: Derek Rotz
aimler Trucks North America LLC
May 12, 2011

Project ID: ARRAVT080

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Overview

Timeline
- Project start: April 2010
- Project end: March 2015
- Percent complete: 20%

Budget
- Total project: $79,119,736
 - DOE: $39,559,868
 - Daimler: $39,559,868
- Budget is split between engine and vehicle projects (DDC & DTNA)

2010 DTNA direct hrs + material
- Total: $2,707,000
- DOE: $1,354,000
- DTNA: $1,354,000

Barriers
- Risk: aggressive freight efficiency target
- Complexity of vehicle integration

Partners
- Oregon State University
- Detroit Diesel, Daimler Research
- Schneider National, Walmart
- Great Dane
- ARC
- Solar World Industries America Inc.
- Department of Energy
Program Objective

- Super Truck (ST) program goal: 50% improvement in freight efficiency
 - Measured in ton/miles/gallon over typical heavy truck drive cycle
 - Baseline is production 2009 Cascadia with DD15 Engine
Eight Cross-Functional Workstreams

- Engine Downsizing & Hybrid
- Powertrain Integration
- Energy Management
- Parasitic Losses
- Aerodynamics
- Weight Reduction
- Waste heat Recovery
- 50% Improvement in Freight Efficiency
- Predictive Technologies
Baseline Evaluation

Highway Cycle (58 mph)
- **Distance:** 401 miles
- **Tests completed:** 5 x round trip
- **2 x tractors**
- **Data Collected:** 1.7 GB
- **Channels:** 126

Highway Cycle (65 mph)
- **Distance:** 438 miles
- **Test completed:** 5 x round trip
- **2 x tractors**
- **Data Collected:** 1.7 GB
- **Channels:** 126

Urban Cycle (30 – 45 mph)
- **Distance:** 25 miles
- **Test completed:** 15 x round trip
- **2 x tractors**
- **Data Collected:** 0.7 GB
- **Data Collected:** 0.7 GB
- **Channels:** 126

Idle Cycle
- **Cycle:** 10 hour idling
- **Duration:** 5 hours *(summer mode)*
- **Duration:** 5 hours *(winter mode)*
- **Test completed:** 4 x tractors
- **Data Collected:** 0.4 GB
- **Channels:** 126
Vehicle Simulation Scenarios

Baseline Truck
- **Coefficient of Drag & Frontal Area (Cd*A):** Cascadia 125" BBC 72" RR
- **Coefficient of Rolling Resistance (Crr):** Baseline
- **Transmission & Axle Ratios:** Overdrive std. rear axle ratio
- **Axle Efficiency (η):** Baseline Axles
- **Auxiliary Loads {off, on}:** on
- **Freight Mass:** 15.6 t
- **Regeneration:** No Regeneration
- **Idling:** Main Engine
- **Intelligent Controls:** Baseline

Target Truck 1
- **Coefficient of Drag & Frontal Area (Cd*A):** Cascadia with Component upgrade
- **Coefficient of Rolling Resistance (Crr):** Low RR Dual Tires
- **Transmission & Axle Ratios:** Direct Drive Faster rear axle ratio
- **Axle Efficiency (η):** Conventional Axle Upgrades
- **Auxiliary Loads {off, on}:** on
- **Freight Mass:** 15.4 t
- **Regeneration:** Partial EB
- **Idling:** Current APU
- **Intelligent Controls:** Controllable Systems + Predictive Cruise

Target Truck 2
- **Coefficient of Drag & Frontal Area (Cd*A):** Cascadia-based Full exterior upgrade
- **Coefficient of Rolling Resistance (Crr):** Low RR Super-Single
- **Transmission & Axle Ratios:** + optimized control strategy
- **Axle Efficiency (η):** 0.975
- **Auxiliary Loads {off, on}:** off
- **Freight Mass:** 15.8 t
- **Regeneration:** Partial EB + SB
- **Idling:** SOFC /Hybrid
- **Intelligent Controls:** + Additional Predictive Technologies

Target Truck 3
- **Coefficient of Drag & Frontal Area (Cd*A):** “Bullet” Truck
- **Coefficient of Rolling Resistance (Crr):** Advanced Tire Technologies
- **Transmission & Axle Ratios:** Advanced Powertrain Technologies
- **Axle Efficiency (η):** Advanced Axle Technologies
- **Auxiliary Loads {off, on}:** off
- **Freight Mass:** 16.3 t
- **Regeneration:** Full EB + SB
- **Idling:** Advanced APU Technologies
- **Intelligent Controls:** Advanced Controls

Fixed Parameters
- **Engine:** 15 liter 455/1550
- **GCVW:** 65000 lbs

Increasingly aggressive targets
Vehicle Simulation Results-Energy Consumption

- Baseline Truck
- Target Truck 1
- Target Truck 2
- Target Truck 3

- Idle Losses
- Braking Losses
- Vehicle Losses
- Powertrain & Parasitics
- Engine Losses

Mass-Adjusted Energy Losses (kw-hr)
Roadmap: Vehicle-Side Technologies

Freight Efficiency Improvement (FEI)

- Aerodynamic Drag reduction
- Rolling Resistance Reduction
- Coaching
- Intelligent Controls
- Weight Savings
- Other Regen.
- Braking Regen.

Technologies:
- External Aerodynamics
- Tires
- Energy Mgt.
- Powertrain Integration
- Materials
- Hybrid
- Idle Reduction
- Parasitic Losses
External Aerodynamic Analysis

Scale Wind Tunnel Testing

Objective: 30% aero. drag reduction over baseline

Results to Date

- 268 hrs of wind tunnel tests
- Identification of significant parameters

Computational Fluid Dynamics

50+ full vehicle simulations (30,000 CPU-hrs)
- Drag Development
- Visualization

NEXT STEPS: lock-in macro tractor-trailer design features, investigate underhood thermal management
Hybrid Electric Architecture

Proposed Hybrid Architecture

- Parallel hybrid configuration
- Weight advantage
- Enabler for additional features (e.g. anti-idle)

Weight Impact Analysis

Results To Date

- Analysis of various architectures complete
- Simulation on Portland Route indicate sufficient fuel savings to meet target

NEXT STEPS: Further analysis to size components (E-motor, Battery) and buildup of hybrid system
Parasitic Losses

Objective: 2% Freight Efficiency Improvement through auxiliary optimization

Air Conditioning System
- Investigation of Single Circuit Layout

Target: Optimization of power consumer operation (fan, compressor)

Power Steering System
- Evaluation of efficient concepts

Open Center
- Constant Flow
- Variable Pressure

Closed Center
- Variable Flow
- Variable Pressure

Target: Minimization of Pump Power & Duty Cycle

NEXT STEPS: Evaluation / Selection of preferred concept sizing of system components
Idle Reduction Technologies

Objective: 4% Freight Efficiency Improvement over baseline (*main engine idling*)

Solid-Oxide Fuel Cell APU

Results: SOFC-APU installed & tested on Cascadia, fuel measurement

Characteristics:
- Enables full-engine off Operations

Hybrid System

Results: concept defined, preliminary energy calculations completed

Characteristics:
- Fast on/off time
- No dedicated added weight

➤ **NEXT STEPS:** evaluation / selection of preferred SuperTruck concept based on representative test cycles
Investigation Phase – Portfolio Analysis

- A portfolio analysis was performed to identify potential weight reduction concepts.
- Concepts were discussed and grouped according to short / medium / long term.
- Certain concepts were further investigated by a feasibility analysis.

Some of the proposed concepts include:

<table>
<thead>
<tr>
<th>Aluminum Frame Rails</th>
<th>Lightweight MMC components</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal tailpipe</td>
<td>One-piece driveshaft</td>
</tr>
<tr>
<td>Load optimized frame rail</td>
<td>Multi-link suspension</td>
</tr>
<tr>
<td>Composite fuel tanks</td>
<td>Integrated suspension/ airbag system</td>
</tr>
<tr>
<td>Load optimized 5th wheel approach</td>
<td>Spaceframe chassis concept</td>
</tr>
</tbody>
</table>
Chassis – Load Sensitivity / Optimization Study

Objective: to save 1000 lbs while meeting loading criteria using innovative chassis design and new materials

Conventional Frame

NEXT STEPS: Evaluate cross-sectional geometries to meet deflection criteria with standard 5th wheel position

Load-Optimized Frame

NEXT STEPS: Concept development and load path analysis based on Topology Optimization.
Energy Management

Predictive Torque Management

• Limits torque based on vehicle mass and road grade to limit excessive accelerations.
• Torque Limit applied using J1939 TSC1 message.

Results To Date

• Simulations shows fuel saving based on limiting factor, terrain & driving behavior
• Prototype hardware installed and functional in vehicle

➔ NEXT STEPS: Conduct a fleet trial to evaluate ‘real-world’ performance and driver feedback, define calibration levels
Summary and Future Work

First Year of SuperTruck Complete

- Baseline vehicle & route specified
- Completed baseline testing
- Definition of technical measures on a system basis
- Vehicle improvement targets defined based on simulation
- Key accomplishments for concept development
 - Hybrid & Energy Management Simulation
 - FEA of Lightweight Frame
 - Aerodynamic and CFD Analysis

Future Work for 2011

- Complete high-level SuperTruck vehicle specification,
- Resolving technology conflicts
- Complete digital mockup
- Build up prototype systems for performance evaluation on 3 ‘tinker’ trucks
 - Hybrid, powertrain, chassis, aerodynamics
Collaboration and Support

Oregon State University
- Composite Frame Analysis
- Fuel Efficient Routing

Schneider National / Walmart
- Fleet Partner – Technology Evaluation

Great Dane
- Trailer Lightweighting & Aerodynamics

ARC
- Aerodynamics

Department of Energy Head Quarters
- Gurpreet Singh
- Roland Gravel
- Carl Maronde (NETL)

Acknowledgment: This material is based upon work supported by the Department of Energy National Energy Technology Lab under Award Number DE-EE-0003348.

Disclaimer: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.