Low-Cost U.S. Manufacturing of Power Electronics for Electric Drive Vehicles

Gary A. Cameron
Delphi Automotive Systems, LLC
10 May 2011

This presentation does not contain any proprietary, confidential or otherwise restricted information
Project Overview

Timeline
- **Start:** January 2010
- **Finish:** December 2012
- **Approx. 35% complete** (through Feb 2011)

Barriers
- **Limited supply of technical resources**
 - Technical training and experience with high-voltage, high-current (power) electronics
- **Market demand for EDVs sensitive to:**
 - Unstable/unpredictable fuel prices
 - U.S. policy incentives for EDVs and U.S. sourcing

Budget
- **Total project funding**
 - DOE: $89.3M
 - Contractor: $89.3M
- **DOE funding to date**
 - As of Feb/11: $31.6M

Collaborators
- **Project Lead:** Delphi
- **Vehicle OEMs:** GM, Coda Automotive, others
- **Powertrain OEM Customers:** Allison
- **Suppliers:** power silicon, capacitors, etc.
 - 145 qualified for power electronics (68 U.S.)
Collaborators

- Vehicle OEM Customers
 - E.g. GM, Coda Automotive

- Powertrain OEM Customers
 - E.g. Allison Transmission

- Suppliers
 - Silicon, capacitors, circuit boards, castings, magnetics, etc.
 - 561 total qualified suppliers to Delphi
 - 145 in use for Power Electronics (68 U.S. based)

- State of Indiana – incentives offered
 - EDGE Tax Credit over ten-year period
 - Skills Enhancement Fund support over two-year period

- City of Kokomo, Indiana – incentives offered
 - Personal Property Tax Abatement – five years on manufacturing equipment and special tooling – approved by City Council on 26Apr2010
 - Revolving Loan Fund
 - Workforce development support
Relevance: Lower-cost power electronic products enable expansion of U.S. demand for EDVs
Relevance: Establishes U.S. power electronics production capacity

◆ Build upon Delphi’s core capabilities
 – Rapid, concurrent product/process design optimization for production
 – Testing for validation
 – Power electronics product line
 » Inverters, converters, chargers, controllers, energy storage systems

◆ Establish a globally competitive, U.S.-based production source for power electronics
 – Automobiles
 – Commercial vehicles
 – Off-road / industrial equipment

Delphi’s Power Electronics Manufacturing Site
Kokomo, Indiana
Relevance: Provides a commercial path for future power electronics technology

– October 2007 –
Delphi Awarded $8.2M DOE program for Development, Test and Demonstration of a Cost-Effective, Compact, Light-Weight, and Scalable High Temperature Propulsion Inverter

– November 2009 –
Delphi Awarded $8.4M DOE program to develop GaN devices for HEV/PHEV/EV/FCV
Approach: Apply more than 20 years of Delphi experience with EV and HEV technology

- Largest North American supplier for HEV power electronics components and energy management systems
- HEV propulsion architects for multiple vehicles
- More than 100 relevant patents issued since 2000
- Focusing on aggressively lowering the cost of powertrain electrification
 - System design and architecture
 - Component design and development
 - Controls and algorithm development
 - Design for manufacturability

The Result – Higher Market Use of Energy-reducing EV and HEV Technology in Transportation
Approach: Use wide array of Delphi EV/HEV component and system development tools

- Heat Exchanger
- Fluid Dynamics Modeling
- System Dynamometers
- Power Module
- Thermal FEA
- DC Bus Structure
- Q3D Inductance Modeling
- Vehicle Integration
- Vehicle Modeling and Simulation
Approach: Build Upon Delphi’s Extensive Validation Test Capability

Performance / Temperature
Tri-Temperature
Thermal Shock

EMI / EMC
• Emissions
• Susceptibility
• Immunity

Mechanical Test

Vibration +
Thermal Shock

Environmental
• Humidity
• Dust
• Corrosion
• Humidity

Highly Accelerated Life Test

Powered Temperature Cycling
Approach: Employ Delphi’s Value-Add

◆ Cost Efficiency
 – Delphi understands automotive cost challenges and price competition
 – Delphi leverages a large supplier base and technology building blocks to create affordable products, through volume production with economies of scale

◆ Innovation
 – Invention applied to high-volume production
 – Proprietary IGBT technology
 – Solving the problems of thermal management and packaging for transportation

◆ Proven Reliability
 – Delphi track record of single-digit PPM production of automotive power electronics and energy storage systems
Approach:
Target Work in Three Major Areas

- Optimize Delphi’s power electronics component and system designs for volume production
 - Automotive vehicle manufacturers
 - Commercial vehicle manufacturers
 - Off-road/industrial equipment and vehicle manufacturer/customers

- Retrofit existing and install required new equipment and tools

- Validate the readiness of Delphi’s component and system designs for production
Approach: Use Delphi’s Product Development Process
Accomplishments:
New Power Electronics Production Facility

◆ Progress (April 2010 – March 2011)
 – First product validation build (May 2010)
 – First production started (July 2010)
 – ISO/TS 16949 Quality Management System Certification (Number: TS 567383) achieved for new facility and remote support services (Sept 27, 2010)
 – Installed additional test capacity for DC/DC converter (Jan 19, 2011)
 – Completed validation lab construction, and began testing inverters (Feb 5, 2011)
 – Installed a Nitrogen on-demand generator system (March, 2011)
 – Successfully passed a new customer run-at-rate (Feb 17, 2011)

◆ Additional achievements expected through 2011
 – Establish new engineering office area (April, 2011)
 – First pre-design proto builds scheduled for converters and inverters (Q3)
 – First flexible final assembly & test area installed (Q3)
 – Recertification of TS 16949 & ISO 14001 (Q4)
Accomplishments: Chargers 100/220 AC to DC

- **Progress (April 2010 – March 2011)**
 - Customer development activity continues in North America, Europe and Asia (focus on PHEV chargers)
 - Evolving market requirements dictated product design changes

- **Additional achievements expected through 2011**
 - Anticipate initial customer commitment
 - First low-volume samples produced in controlled process environment
Accomplishments: Passenger Car Inverters

Progress (April 2010 – March 2011)
- Customer units delivered for motor calibration (Nov 2010)
- First reliability evaluation successfully completed (Jan 2011)
- Validation equipment delivered and installed (March 2011)
- Second design turn build complete (March 2011)

Additional achievements expected through 2011
- Second design turn reliability testing will be started
- Customer vehicle testing will be started
- Initial compliment of production equipment ordered / installation started
Accomplishments: Commercial Vehicle Systems

◆ Progress (April 2010 – March 2011)
 – First inverter drove a motor (April 2010)
 – First complete customer system delivered (July 2010)
 – First reliability evaluation completed (October 2010)
 – First vehicle test complete with inverter, converter and battery system (Feb 2011)

◆ Additional achievements expected through 2011
 – First reliability testing will start for the battery controller, commercial converter, commercial inverter and commercial battery system
 – Multiple customer deliveries will occur
Accomplishments: Passenger Car DC-DC Converters

◆ Progress (April 2010 – March 2011)
 – First process confirmation build completed (June 2010)
 – Validation build and testing completed (Sept 2010)
 – First production shipment to a China customer (Oct 2010)
 – First production shipments to two European customers (Feb 2011)

◆ Additional achievements expected through 2011
 – Continue sales activity to expand production volume
Accomplishments:
Estimated Number of Jobs Created / Retained

This project has resulted in 127 jobs *directly* created or retained at Delphi (as of 31Dec2010) and many more U.S. jobs indirectly.

<table>
<thead>
<tr>
<th>U.S. Jobs Created or Retained</th>
<th>DOE's 50% Cost-Share</th>
<th>Delphi's 50% Cost-Share</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delphi Direct FTEs (ARRA Reported FTEs)</td>
<td>63.6</td>
<td>63.6</td>
<td>127.3</td>
</tr>
<tr>
<td>Delphi Indirect/Support FTEs</td>
<td>31.8</td>
<td>31.8</td>
<td>63.6</td>
</tr>
<tr>
<td>Subtotal Delphi</td>
<td>95.4</td>
<td>95.4</td>
<td>190.9</td>
</tr>
<tr>
<td>Est. Suppliers' FTEs (1.036 x Delphi) *</td>
<td>98.9</td>
<td>98.9</td>
<td>197.8</td>
</tr>
<tr>
<td>Est. Indiana Community FTEs (1.049 x Delphi) *</td>
<td>100.1</td>
<td>100.1</td>
<td>200.2</td>
</tr>
<tr>
<td>Est. Total Jobs Created / Retained</td>
<td>294.4</td>
<td>294.4</td>
<td>588.9</td>
</tr>
</tbody>
</table>

Future Work: FY12 & FY13

Determination of Project Success

☑ An ISO/TS16949 quality certified U.S. power electronics production facility

☑ A world-class U.S. skilled workforce at Delphi and our suppliers, capable of meeting the needs of the emerging U.S. and global demand for power electronics components and systems for EDVs

- Complete implementation of scalable, lean and cost-effective manufacturing processes that can be rapidly expanded to meet increases in demand

- An established U.S. test and remanufacturing operation for power electronics components and systems associated with EDVs

- U.S. production capacity established for power electronics components and systems capable of supporting annual production of at least 200,000 EDVs
Summary

- Delphi is the largest North American supplier of power electronics components for EDVs
- Delphi is committed to the future of power electronics and the petroleum reduction benefits of EDVs
- This project will help ensure that vehicle OEMs and power system integrators have a globally competitive U.S. source for power electronics
- Delphi has in place the customer base, strategic partnerships and supplier foundation necessary to achieve the goals of this project