Recovery Act: Nanoengineered Ultracapacitor Material Surpasses the $/kW Threshold for Use in EDVs

Chris Wheaton COO & CFO
EnerG2, Inc.
May 11, 2011

ARRAVT011

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Overview

Design and build a factory for large-scale production of nano-engineered carbon materials

Timeline

- **Start**: April 2010
- **Target End**: March 2012
- ~35% Percent complete

Challenges

- **Phase I**: Finalize process design for scale
- **Phase II**: Ensure on time delivery of processing equipment
- **Phase III**: Resolve uncertainties surrounding a complex construction project
- **Phase IV**: Fine-tune process and equipment parameters

Budget

- **DOE Share**: $21.3 million
- **EnerG2 Share**: $7.4 million
- **Capital**: 77%
- **Operating**: 23%

Key Partners

- **Preliminary Design**: CH2M Hill, Portland, OR
- **Construction**: Fisher & Sons, Burlington, WA
- **Processing Equipment**:
 - Oregon Freeze Dry, Albany, OR
 - Harper Int’l, Lancaster, NY
 - Procedyne, New Brunswick, NJ
Relevance

Engineered Carbon Will Be the Key to Energy Storage
Relevance

• Technical Advancements and Unique Capabilities
 – EnerG2 NC-Series Electrode Carbon will result in a new generation ultracapacitor with significantly higher power density and much lower cost per kW
 – Enable the combining of ultracapacitors and batteries in EDVs to reduce capital and battery replacement costs while improving mileage efficiency and vehicle performance
 – The plant, when complete, will produce enough NC-Series electrode carbon to supply production of 60,000 EDVs annually

• Job Creation and Economic Growth
 – At least 50 jobs will be created or sustained in the Albany, Oregon area during the design, procurement and construction phases of this project.
 – Once the manufacturing facility is up and ready for production, it will employ at least 25 full-time positions to operate the facility.
 – When the plant is at full capacity, the headcount in the factory is expected to be at least 35 full-time employees with potentially more as final detailed designs are completed.
 – Expansion will further accelerate high-quality job creation
Relevance:
Tuned Pore Structures

We have the unique ability to tune the pore structure of the precursor and maintain that structure during manufacturing:
Our ability to engineer carbon pore distribution has enabled rapidly improved performance in our ultracapacitor carbon:
Relevance:

Unrivaled Purity

Because we start with pure precursors, EnerG2 carbon has less than 1/10th of the impurities that are found in other activated carbons.
Relevance: Exponential Storage

- Energy and Power increase with voltage squared
- Operating voltage is maxed at 2.7V for automotive
- Transition from 2.7 to 3.0V yields 23.4% increase in energy and power
- Transition to Li-ion V (3.7V) would nearly double energy and power density

![Graph showing relative energy and power density against operating voltage.]

23.4% more Energy and Power
Approach

Raw Materials Production

Commodity Precursors

POLYMERIZATION

GELATION

Drying Operations

FREEZING

DRYING

Kiln Operations

PYROLYSIS

ACTIVATION

Finishing Operations

MILLING

PACKAGING

Condensate Scrubber

Domestic Production by Suppliers

EnerG2 / DOE
Carbon Manufacturing Plant – Albany, OR
Approach: Timeline

<table>
<thead>
<tr>
<th>Task</th>
<th>Critical Path?</th>
<th>Start Date</th>
<th>End Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase I – Design</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1 – Project Planning and High-Level Design</td>
<td></td>
<td>4/1/2010</td>
<td>11/28/2011</td>
</tr>
<tr>
<td>1.2 – Site Acquisition</td>
<td></td>
<td>4/1/2010</td>
<td>4/21/2010</td>
</tr>
<tr>
<td>1.3 – Select Design / Build Firm</td>
<td></td>
<td>10/22/10</td>
<td>3/4/2011</td>
</tr>
<tr>
<td>1.4 – Finalize Detailed Process Design</td>
<td></td>
<td>2/21/10</td>
<td>2/18/2011</td>
</tr>
<tr>
<td>1.5 – Sign Construction Contract</td>
<td></td>
<td>1/1/2011</td>
<td>3/31/11</td>
</tr>
<tr>
<td>1.6 – Begin Environmental Permitting Process</td>
<td></td>
<td>5/3/2010</td>
<td>6/7/2011</td>
</tr>
<tr>
<td>Phase II – Procurement & Mobilization</td>
<td>√</td>
<td>Q4 2010</td>
<td>7/1/2011</td>
</tr>
<tr>
<td>2.2 – Mobilize Building Construction</td>
<td></td>
<td>3/21/2010</td>
<td>6/19/2011</td>
</tr>
<tr>
<td>2.3 – Submit Building Permit Applications</td>
<td></td>
<td>6/6/2011</td>
<td>6/19/2011</td>
</tr>
<tr>
<td>Phase III – Construction</td>
<td>√</td>
<td>6/6/2011</td>
<td>6/19/2011</td>
</tr>
<tr>
<td>3.1 – Initiate Building Construction</td>
<td>√</td>
<td>8/12/2011</td>
<td>12/31/11</td>
</tr>
<tr>
<td>3.3 – Connect Utilities Connections</td>
<td>√</td>
<td>7/15/2011</td>
<td>12/31/2011</td>
</tr>
<tr>
<td>3.5 – Environmental & Occupancy Permits Issued</td>
<td>√</td>
<td>8/12/2011</td>
<td>8/12/2011</td>
</tr>
<tr>
<td>Phase IV – Startup</td>
<td></td>
<td>8/12/2011</td>
<td>1/31/2012</td>
</tr>
<tr>
<td>4.3 – Develop Full QA / QC Program</td>
<td></td>
<td>12/31/2011</td>
<td>3/1/2012</td>
</tr>
<tr>
<td>4.4 – Test and Commence Operations</td>
<td></td>
<td>Q1 2012</td>
<td></td>
</tr>
</tbody>
</table>

START OF PRODUCTION
Accomplishments

• Projected Job Creation Timeline (all in OR)

<table>
<thead>
<tr>
<th>Current</th>
<th>Q2 2011</th>
<th>Q3 2011</th>
<th>Q4 2011</th>
<th>Q1 2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>6</td>
<td>14</td>
<td>20</td>
<td>35</td>
</tr>
</tbody>
</table>

• NEPA Complete; FONSI issued April 7, 2010
• Groundbreaking held August 10, 2010
Accomplishments

Site Acquired April 2010

Design Complete April 2011
Accomplishments
Collaborators

<table>
<thead>
<tr>
<th>Partner</th>
<th>Role on Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH2M Hill (Portland, OR)</td>
<td>Preliminary design and scale-up engineering; material handling systems</td>
</tr>
<tr>
<td>Fisher & Sons, Inc. (Burlington, WA)</td>
<td>Detailed design and construction, equipment installation</td>
</tr>
<tr>
<td>Oregon Freeze Dry (Albany, OR)</td>
<td>Engineering, production and installation of freeze drying equipment</td>
</tr>
<tr>
<td>Harper International (Lancaster, NY)</td>
<td>Engineering and production of pyrolysis kiln systems</td>
</tr>
<tr>
<td>Procedyne (New Brunswick, NJ)</td>
<td>Engineering and production of activation kiln systems</td>
</tr>
<tr>
<td>Jet Pulverizer Co. (Moorestown, NJ)</td>
<td>Engineering and production of milling systems</td>
</tr>
</tbody>
</table>
Future Work

<table>
<thead>
<tr>
<th>Likely Timing</th>
<th>Phase II – Equipment Procurement and Design Finalized</th>
<th>Phase III – Construction</th>
<th>Phase IV – Start-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 2011 through May 200</td>
<td>April 2011 through December 2011</td>
<td>January & February 2012</td>
<td></td>
</tr>
</tbody>
</table>

Key Activities

Phase II – Equipment Procurement and Design Finalized
- Design, specify and procure all processing equipment
- Complete process and material handling design to guide construction decisions

Phase III – Construction
- Hire subcontractors
- Mobilize for construction
- Demolition
- Construction
- Equipment installation
- Secure occupancy permits
- Hire initial contingency of operators

Phase IV – Start-up
- Tune equipment for specified process parameters
- Hire all remaining operations personnel
- Finish quality documentation and SOPs; train employees
- Commence operations
Summary

• Game-changing material will rapidly enhance energy storage technologies

• ARRA funds are helping to create a new industry in the United States

• New factory will create significant number of jobs and industrial growth in a region suffering from acute unemployment

• Cadre of domestic suppliers are helping to keep the project on time and on budget

• First products scheduled to be produced in Q1 2011, if not before