ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine

Michael J Ruth
Cummins Inc
13 May 2011
Project ID: ACE061

This presentation does not contain any confidential, proprietary, or otherwise restricted information.
Next Generation T2B2 Diesel Engine

Overview

Timeline
Start: 10/1/2010
End: 9/31/2014
Complete: <10%

Barriers addressed
High efficiency - 28 MPG CAFE in ½ ton pickup truck
Low emission – Tier2 Bin2
Cost effective solution

Budget
Total Project:
$15M DoE
$15M Cummins
Total Spend to date:
$0.5M DoE
$0.5M Cummins

Partners
Nissan Motors Light Truck
NxtGen Emissions Solution
Johnson-Matthey Inc
Next Generation T2B2 Diesel Engine Objectives

- Engine design and development program to achieve:
 - 40% Fuel Economy improvement over current gasoline V8 powered half-ton pickup truck
 - Tailpipe requirements: US T2B2 new vehicle standards

- FE increase in light trucks and SUVs of 40% would reduce US oil consumption by 1.5M bbl/day
 - Lower oil imports and trade deficits
 - GHG emissions reduction of 0.5 MMT/day
Next Generation T2B2 Diesel Engine Objectives

<table>
<thead>
<tr>
<th></th>
<th>Baseline * vehicle data</th>
<th>DoE Program Target **</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTP – 75 “city”</td>
<td>15.6</td>
<td>21.8</td>
</tr>
<tr>
<td></td>
<td>570</td>
<td>462</td>
</tr>
<tr>
<td>HFET “hi-way”</td>
<td>24.5</td>
<td>34.3</td>
</tr>
<tr>
<td></td>
<td>363</td>
<td>292</td>
</tr>
<tr>
<td>CAFE</td>
<td>18.6</td>
<td>26.0</td>
</tr>
<tr>
<td></td>
<td>476</td>
<td>385</td>
</tr>
</tbody>
</table>

* Baseline data from 2010 EPA database for new vehicle certification for Nissan Titan 2WD at 5500 lb test weight
** DoE program targets base on MPG values
Milestones

<table>
<thead>
<tr>
<th>% Complete</th>
<th>Milestones</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>Vehicle baseline testing – Fuel Economy, Emissions and Performance</td>
</tr>
<tr>
<td>75%</td>
<td>Engine baseline testing – Fuel Economy and Emissions</td>
</tr>
<tr>
<td>40%</td>
<td>A/T system model available for exercise</td>
</tr>
<tr>
<td>50%</td>
<td>Readied for test, combustion mule engine</td>
</tr>
<tr>
<td>10%</td>
<td>A/T system readied for test</td>
</tr>
<tr>
<td>50%</td>
<td>Mule vehicle complete</td>
</tr>
<tr>
<td>10%</td>
<td>Major reviews complete for new engine design (long lead time items)</td>
</tr>
</tbody>
</table>
Program Milestones

<table>
<thead>
<tr>
<th>Year</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mar 2012</td>
<td>Demonstration of LA-4 on engine dyno with Engine Out Emissions at target level</td>
</tr>
<tr>
<td>Jul 2012</td>
<td>A/T system architecture is defined, include sensor plan and OBD plan</td>
</tr>
<tr>
<td>Sep 2012</td>
<td>New engine assembly complete</td>
</tr>
<tr>
<td>May 2013</td>
<td>Demonstration of FTP on engine dyno at T2B5 tailpipe</td>
</tr>
<tr>
<td>Nov 2013</td>
<td>New engine operational in vehicle with full A/T system</td>
</tr>
<tr>
<td>Dec 2013</td>
<td>Demonstration of FTP on chassis at T2B5</td>
</tr>
<tr>
<td>May 2014</td>
<td>Demonstration of FTP on engine dyno at T2B2 tailpipe</td>
</tr>
<tr>
<td>Sept 2014</td>
<td>Demonstration of FTP on chassis at T2B2</td>
</tr>
</tbody>
</table>
Technical Approach – High Efficiency

- **Learning from LDECC program**
 - High charge flow improves NOx/PM potential via extended PCCI operating range
 - High charge flow reduces energy available for A/T

- **Appropriate sized engine**
 - Displacement for power, thermal management, fuel economy

- **Reduce FE penalty due to emission controls**
 - Low pressure EGR to reduce EGR pumping work
 - Fast exhaust warm up via design features

- **Diesel application weight control**
 - Engine weight control via design features
Innovation You Can Depend On™

This presentation does not contain any confidential, proprietary, or otherwise restricted information.

Technical Approach – High Efficiency

Appropriate sized engine

- Down sized engine => Increased power density => Maintain vehicle drivability & Improved FE

Addressable market based on power and torque band in base offerings.

Ideal positioning given current capabilities is shown with a ‘star’.

Value proposition is ‘high FE’ with acceptable power/torque.
Technical Approach – High Efficiency

Appropriate sized engine

- Down sized engine => increased loads => higher exhaust gas temperature => Improved A/T performance
Technical Approach – High Efficiency
Reduce FE penalty due to emission controls

- Low pressure EGR to reduce pumping work

Steady speed and load, Fixed A/F ratio, EGR sweep

- Increasing Pumping Work to Drive EGR
- Reducing Intake Manifold O2 Concentration
- Increased Gas Cooling

This presentation does not contain any confidential, proprietary, or otherwise restricted information.
Technical Approach – High Efficiency
Reduce FE penalty due to emission controls

- PNA to control NOx under cold start w/o FE penalty

- A passive NOx Adsorber (PNA) stores NOx at low temperature and desorbs as the catalyst temperature increases

- With an optimal formulation release of NOx when the SCR reaches operating temperature

- PNA stores approximately 75% of the NOx released by the engine up to 180s into the cold FTP cycle

- This stored NOx is released around 180s when the exhaust temperature reaches 200°C

- Nearly all NOx captured by PNA during cold start
Technical Approach – High Efficiency
Reduce FE penalty due to emission controls
Design features for fast warm up

- Fabricated exhaust manifold instead of cast iron
- Close coupled aftertreatment
 - DOC/DPF assembled onto engine
 - Dual wall exhaust pipe work underbody
- Minimized exhaust port “wetted” area

This presentation does not contain any confidential, proprietary, or otherwise restricted information.
Technical Approach – Engine weight control via design features

Goal: equivalent application weight as baseline engine

- Light weight steel piston for reduced friction & compression height with increased power density
 - Reduce deck height, reduced cylinder block weight
- Aluminum cylinder head for weight and size optimization
 - Reduced development time and cost to program
 - Make common with LDD V8 (previous DoE program engine)
- Fabricated manifold for rapid exhaust warm up
 - Reduced weight vs standard cast iron
- Forged crankshaft with smaller (than cast) journals and increased strength for power density
 - Smaller and lighter vs standard cast iron
APT LD CAFE Fuel Economy Plan

Fuel Economy (mpg)

- Conversion to diesel fuel
- Closed cycle efficiency
- High Eff NOx Aftertreatment
- High Eff HC Aftertreatment
- Close coupled DPF
- Low Pressure EGR Circuit
- Variable Swirl / Adv port design
- Exh thermal management design
- Acc drive control optimization
- VVA operation
- Cycle tuning
- Internal engine parasitics

This presentation does not contain any confidential, proprietary, or otherwise restricted information.
APT Light Duty Tailpipe NOx Strategy

Closed cycle efficiency
High Eff NOx Aftertreatment
High Eff HC Aftertreatment
Close coupled DPF
Low Pressure EGR Circuit
Variable Swirl / Adv port design
Exh thermal management design
Acc drive control optimization
VVA operation
Cycle tuning
Internal engine parasitics

Conversion to Diesel
Tailpipe NOx (g/mi)
Technical Accomplishments and Progress

- Baseline engine performance testing complete and correlated to GT-Power model
 - Included FE response to oil viscosity testing
- Baseline vehicle performance testing complete
 - Basis for front end of vehicle model
- Combustion Mule Engine
 - Design and procurement of variable swirl system
 - Design and procurement of Generation 3 Piezo FIE adapted to engine
 - Design and procurement of HP/LP EGR system
- Mule Vehicle for drive train optimization
 - Build complete, first fire in April 2011
 - Development of shift strategy, acc load management, etc.
Technical Accomplishments and Progress

- **Base engine**
 - crank analysis completed for new mat’l, main and pin sizes – design included low viscosity oil properties
 - power cylinder kit designed for short comp height and low friction ring pack
 - detailed GT model (capable of coupling with vehicle and A/T)

- **Control system**
 - Completed first order HP/LP operational model
 - Designed and implemented mule vehicle control network

- **Aftertreatment modeling**
 - New A/T technology first order model (PNA)
 - Full model for A/T options (SCR vs NAC)
 - Detailed model for target development of 0-180 sec

- **Vehicle model**
 - Baseline for mule development underway
Collaborations

- **Partners**
 - **Johnson-Matthey** – (industry, subcontractor) Advanced aftertreatment formulations and architecture
 - Passive NOx adsorbers for cold start NOx emission mitigation
 - Close coupled SCR on filter for improved cost and effectiveness
 - **Nissan** (industry, partner) – Vehicle integration and guidance on engine technical profile.
 - **NxtGen** – (industry, subcontractor) exhaust thermal enhancer via syngas generation

- **Other involvement**
 - **Rose-Hulman** – (institution, contract) Control system development to reduce sensor needs and improve robustness of controls
 - **ORNL** – (Nat’l Lab, association) working with light weight CRADA team to integrate advanced material process into base engine components
Future Work

- 2011: Complete combustion mule development in order to specify technical design requirements for:
 - HP/LP EGR and air handling system (control, cooling, restrictions, etc)
 - Fuel injection system (Nozzle specs, operational specs, etc..)
 - Variable swirl system and base cylinder head specifications
 - Aftertreatment system architecture and materials

- 2011: Complete single cylinder engine work to investigate variable valve motion (VVA and VVT)

- 2011: Complete mule vehicle development in order to specify technical design requirements for:
 - Drive train (Shift conditions, warm up methods, rear axle, acc drive…)

- 2012: Procure and build new engine based on mule development and technical specifications
 - Testing of new engine planned for September 2012
Summary

- Sound technical strategy to achieve 40% FE improvement and T2B2 tailpipe emissions.
- Program built on previous program (LDECC) learnings:
 - High charge flow, low O2 combustion scheme
 - Push premixed combustion zone to higher loads
- Collaboration with OEM to ensure the application is designed with minimum impact on vehicle systems and interface.
 - Package majority of emission control system on engine (charge air cooler, Urea doser, DOC/DPF and LP EGR)
- Evaluation of technology based on:
 - Value (performance vs cost)
 - Weight – effect on FE and vehicle impact (component change)
- Cummins will work within current manufacturing strategy to improve commercial opportunities.
 - Minimize impact of new engine on capital investment and supply base
Technical Backup slides
Technical Approach – High Efficiency

Appropriate sized engine

- Down sized engine => Small engine => increased loads => higher efficiency

![Engine Speed vs. Load Diagram](attachment:engine_speed_vs_load_diagram.png)
Mule Vehicle Build
Marketing Research Data on ½ Ton P/U Truck Buyers (Morpace Research Group – 2010)

Relative Feature Importance

- Reliability: 33.2
- Initial Price: 27.3
- Durability: 12.2
- Fuel Economy: 9.3
- Horsepower: 5.7
- Torque: 4.3
- Length of Base Warranty: 3.2
- Cost of Routine Maintenance: 1.3
- Cost of Unscheduled Service: 1.3
- Ease of Maintenance: 1.1
- Fuel Type: 0.6
- Cost of Extended Warranty: 0.6

Reliability is a ticket into the game
Big hitter: Initial Price
#3 is Fuel Economy
HP/LP EGR on Combustion Mule