International Round-Robin on Transport Properties of Bismuth Telluride

Hsin Wang

Oak Ridge National Laboratory
Oak Ridge, TN USA

This project is supported by the International Energy Agency (IEA) under the Implementing Agreement on Advanced Materials for Transportation (AMT) and DOE EERE VT Program - Propulsion Materials: Jerry Gibbs
Annex VIII Participants

• IEA-AMT Thermoelectric Annex
 – Annex lead: Oak Ridge National Laboratory (H. Wang)
 – USA: Clemson (T. Tritt, S. Zhu); Marlow (J. Sharp); Corning (A. Mayolet, C. Smith, J. Senawiratne) and ZT-Plus (F. Harris)
 – China: SICCAS (S.Q. Bai, L. Chen)
 – Canada: Natural Resource Canada (J. Lo); University of Waterloo (Holger Kleinke); University of Quebec at Chicoutimi (Laszlo Kiss)
 – Germany: Fraunhofer IPM (H. Böttner, J. König)

• IEA-AMT members countries:
 – UK: NPL
 – Finland: VTT (discussion on October 20)
 – Israel:
 – Australia:
 – International Observer: Korea: KERI (H. W. Lee)
Annex VIII on Thermoelectric: Oct. 2009 - present:

- Support DOE VT thermoelectric programs for vehicle applications
- Transport properties measurements
- Measurement standards and reliability
- Support the commercialization of thermoelectrics
- Annex VIII on thermoelectrics led by ORNL
 - Round robin 1: 2009-2010 on n-type and p-type bismuth telluride
 - Round robin 2: 2010-2011 on p-type bismuth telluride
 - Round robin 3: 2012 at high temperatures n-type PbTe
IEA-AMT Focus: Bulk Thermoelectrics Used for Automotive Waste Heat Recovery

- Significant gaps exist between literature ZT values and scalable materials

Possible Issues:
- Measurement errors
- No standards for calibration
- Incomplete measurements
- Data extrapolation
- Materials non-uniformity
- Orientation effect
- Measurements on different samples
Marlow Materials Selected for Transport Properties Round-Robin Tests

- Materials: $\text{Bi}_2\text{Te}_{3.005}$ (n-type) $\text{Bi}_{0.5}\text{Sb}_{1.5}\text{Te}_3$ (p-type)

- Four-sample Sets
 - Thermal diffusivity: 12.7 mm diameter disk
 - Specific heat: 4 mm diameter disk
 - Seebeck coefficient and electrical resistivity: $2 \times 2 \times 15 \, \text{mm}^3 \, \text{bar}$, $3 \times 3 \times 12 \, \text{m}^3 \, \text{bar}$

- Temperature range: 20-200°C

- Round-robin plans:
 1. Use best practice in each lab
 2. Focusing on one specific material
 3. Develop test procedures
NIST Standards and Thermoelectrics

- Five internationally recognized standards:
 - Temperature (K); Distance (m); Current (A); Frequency (Hz) and Mass (Kg)

- Thermoelectric properties for ZT:
 - Seebeck coefficient: V/K
 - Electrical resistivity: Ohm-m
 - Thermal conductivity: (W/mK)
 - Thermal diffusivity: m²/sec
 - Specific heat: J/gK
 - Density: Kg/m³

- All TE properties are “derived”

\[
ZT = \frac{s^2 T}{\rho k}
\]
\[
k = \alpha C_p D
\]
Round-robin 1: Thermal Diffusivity

Results from 8 labs
Round-robin 1: Seebeck Coefficient

-300 -200 -100 0 100 200 300

0 50 100 150 200 250 300 350

Temperature (ºC)

Seebeck Coefficient (µV/K)

Lab #1 N 2x2
Lab #1 N 3x3
Lab #1 P 2x2
Lab #1 P 3x3
Lab #2 N 2x2
Lab #2 N 3x3
Lab #2 P 2x2
Lab #2 P 3x3
Lab #3 N 2x2
Lab #3 N 3x3
Lab #3 P 2x2
Lab #3 P 3x3
Lab #4 N 2x2
Lab #4 N 3x3
Lab #4 P 2x2
Lab #4 P 3x3
Lab #5 N1
Lab #5 N2
Lab #5 P1
Lab #5 P2
Lab #6 N 2x2
Lab #6 N 3x3
Lab #6 P 2x2
Lab #6 P 3x3
Lab #7 N 2x2
Lab #7 N 3x3
Lab #7 P 2x2
Lab #7 P 3x3
Round-robin 1: Electrical Resistivity

![Graph showing the relationship between electrical resistivity (mOhm-cm) and temperature (°C) for various labs and lab configurations.]
Round-robin 1: Specific Heat

![Graph showing specific heat vs. temperature for different laboratories and conditions.](image-url)
Round-robin #2 Started October 2010

- Procedures for DSC prepared by ORNL
- Two sets of p-type samples
 - Set #1: ORNL -> Clemson-> Corning -> ZT-Plus -> Germany -> China -> Canada
 - Set #2: China -> (Japan) -> Germany -> ORNL -> Clemson-> Corning -> ZT-Plus -> Canada
- Completed in September 2011
- Report to IEA-AMT: October 2011
- IEA-AMT Topical report November 2011
Discussion on Seebeck Measurements

![Seebeck Coefficient vs Temperature Graph](image)

- **Seebeck Coefficient** (μV/K) vs **Temperature** ($^\circ$C)
- Data from Labs 1 to 7, with Lab #1 to #7 P1-1 to P2-2
- Marlow and Contacts markers
Comments on Seebeck coefficient measurement with ZEM 3 (M10) and IPM-SR1

- **ZEM-3 (M10)**
 Configuration of measurement:

- **IPM-SR1**
 Configuration of measurement:

Assuming the real temperature gradient is the same, the temperature gradient measured with the ZEM-3 tends to be smaller than the one measured with the Fraunhofer IPM-SR1 because of the difference of configurations.
Round-robin 2: Electrical Resistivity

Electrical Resistivity

Resistivity (mOhm-cm) vs. Temperature (°C)

Legend:
- Lab #1 P1-1
- Lab #1 P1-2
- Lab #1 P2-1
- Lab #1 P2-2
- Lab #2 P1-1
- Lab #2 P1-2
- Lab #2 P2-1
- Lab #2 P2-2
- Lab #3 P1-1
- Lab #3 P1-2
- Lab #3 P2-1
- Lab #3 P2-2
- Lab #4 P1-1
- Lab #4 P1-2
- Lab #4 P2-1
- Lab #4 P2-2
- Lab #5 P1-1
- Lab #5 P1-2
- Lab #5 P2-1
- Lab #5 P2-2
- Lab #6 P1-1
- Lab #6 P1-2
- Lab #6 P2-1
- Lab #6 P2-2
- Lab #7 P1-1
- Lab #7 P1-2
- Lab #7 P2-1
- Lab #7 P2-2

Marlow
Round-robin 2: Thermal Diffusivity

Thermal Diffusivity (cm2/sec) vs. Temperature (°C)
Round-robin 2: Specific Heat

![Graph showing the specific heat (Cp) as a function of temperature (°C) for different labs.](image-url)
Round Robin 3 (Spring-Summer 2012)

- Temperature range: RT-500C
- Materials n-type: lead telluride
 - Difficult to machine, especially small disk for DSC
 - Professional cutting for thermoelectrics
 - Back-up materials is n-type skutterudite

- Test Plan: Germany-> China-> US (ORNL, ZT-Plus, GMZ, Clemson, Corning) -> Canada
 - Alternate methods: Marlow, ARL
Summary

- IEA-AMT is addressing the important issue of measurement standardization of thermoelectrics.
- Significant measurement issues were observed, especially in specific heat and electrical resistivity.
- Good agreements in Seebeck coefficient, electrical resistivity.
- Thermal diffusivity in good agreement expect for one test (data analysis).
- Specific heat remains an issue for reliable ZT.
- Round-robin 3 underway.