Development of Marine Thermoelectric Heat Recovery Systems

2012 DOE Thermoelectrics Applications Workshop
March 22, 2011

Travis T. Wallace
President, Thermoelectric Power Systems, LLC
Graduate Student, Mechanical Engineering, University of Maine
Adjunct Faculty, Engineering, Maine Maritime Academy
Topics of Discussion

- Why the integration of thermoelectrics into the marine industry would be beneficial for both parties
- Milestones accomplished by our research program
- Our first prototype TEG design and its potential integration into the industry
Same Problem, Greater Magnitude

- Have similar propulsion means, but marine has a much larger scale
- Larger Economies of Scale
- Heightened Port Restrictions and Engine Emissions Standards Imminent
- 90% of International Cargo Transported via ships

Top Picture Courtesy of MMA Public Relations
Bottom Picture Courtesy of “http://www.dssglobalsecurity.com/Featured_Solutions_PRW4.html”
Advantages of the Marine Industry

- Has the greatest consistent temperature differential
 - Exhaust and Sea Water
- The equipment is much larger and has greater throughputs
- Virtually no limitations on weight and space
- Has a myriad of potential waste heat recovery locations
- The ability to retrofit *every* vessel easily
 - Regardless of use of conventional waste heat recovery
Origins - 2008

- Phase I – Mechanical Feasibility

R/V Friendship

SR30 Microturbine
Origins - Data

R/V Friendship

SR30 Microturbine
Thermoelectric Hybrid Vessel - 2010
Inside the Vessel

- CAT Genset
- HiZ 180W TEG
- Microinverters
- Step-down Transformer
Baseline THV test

Curve Fit for HiZ TEG Test on THV

Power [W]

ΔT [°C]
Creating a Marine Design

Source: Alfa Laval. “M3 Plate heat exchanger”.
Design Considerations

- Comparable to existing plate type heat exchanger design
- Will aid in engineer familiarity, so for a new technology, it will reduce maintenance down time
 - Plate replacements
 - Cleaning
Thermoelectric Power Systems TEG

- Machined at the Advanced Manufacturing Center at the University of Maine

- 20 HZ14 Bismuth Telluride modules from Hi-Z Technology, Inc.
Future Work

- Test and Evaluate the prototype TEG
 - THV to be put in water this week
- Use test data to validate existing models
 - Modify models to incorporate different plate surfaces
- Scale to larger vessel applications
Acknowledgments

- John Fairbanks and the Department of Energy
- Hi-Z Technology, Inc.
- Caterpillar Marine Systems
- American Bureau of Shipping
- Office of Naval Research
- Alfa Laval
- Motion Industries
- WESCO Electrical Supply
- Maine Maritime Academy
 - Dr. Paul Wlodkowski
 - Prof. Peter Sarnacki
 - Dr. George Harakas
 - Dr. Richard Kimball
- University of Maine
 - Dr. Zhihe Jin
 - Dr. Michael Peterson
 - Dr. Bruce Segee
 - John Belding and the Advanced Manufacturing Center