2012 DOE Vehicle Technologies Program Review Presentation

Next Generation Environmentally-Friendly Driving Feedback Systems Research and Development

Matthew Barth

University of California Riverside

May 18, 2012

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Project Overview

• **Timeline**
 – Start 10/1/2011
 – End 9/30/2014
 – 10% complete

• **Budget**
 – Total project funding
 • DOE – $1,210,235
 • Contractor – $665,472
 – Funding received in FY11
 • $0
 – Funding for FY12
 • $556,267

• **Barriers**
 – Barriers addressed
 • Public acceptance
 • Safety concern

• **Partners**
 – ESRI
 – NAVTEQ
 – Beat the Traffic
 – Earthrise Technology
 – Automatik
 – Riverside Transit Agency
 – Caltrans
 – U. of California Berkeley
Project Objective

• To design, develop, and demonstrate a next-generation driving feedback system with four advanced modules:
 – Eco-Routing module
 – Eco-Driving Feedback module
 – Eco-Score and Eco-Rank module
 – Algorithm Updating module

• Success criteria:
 – Improve fuel efficiency of the fleet of passenger cars and commercial vehicles by at least 2%
 – Comply with federal safety and emissions regulations
 – Deployable across existing vehicle fleets
Milestones for FY12

<table>
<thead>
<tr>
<th>Month/Year</th>
<th>Milestone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec 2011</td>
<td>Complete an upgrade of Dynamic Roadway Network (DynaNet) database with 3D digital road map and real-time traffic data feed</td>
</tr>
<tr>
<td>Jul 2012</td>
<td>Complete the design of eco-driving feedback user interfaces and algorithms</td>
</tr>
<tr>
<td>Sep 2012</td>
<td>Complete Eco-Routing Navigation module that incorporates intersection delays in route calculations</td>
</tr>
</tbody>
</table>
Approach – Vision

- Eco-Routing Navigation Module
- In-Vehicle Device
- Route Planning and Scheduling Module
- Algorithm Updating Module
- Eco-Score and Eco-Rank Module
- Server
- Eco-Driving Feedback Module

- Trip Start: Excessive idling. Please start driving or turn off the engine.
- En Route: Excessive acceleration episode.
- Trip End: Excessive idling. Please start driving or turn off the engine.
Approach – Eco-Routing

• Create routes and schedules for day-to-day fleet operation that are optimized for fleet average fuel consumption
• Use real-time traffic data in route calculations
• Account for intersection delays and road topology when finding optimal routes
Approach – Eco-Driving Feedback

- Simple user interfaces
- Supplement visual feedback with auditory feedback to reduce distracted driving and improve effectiveness
- Convey monetary messages in addition to fuel economy messages
Approach – Eco-Score and Eco-Rank

• Track vehicles and monitor driving behavior, vehicle performance, and fuel consumption in real-time
• Periodically assess driving behavior of drivers and provide recommendations for improvements
• Provide platform for performance comparison against oneself over time as well as against other drivers
Approach – Algorithm Updating

- Continuously update Eco-Routing algorithms based on real-world vehicle performance and fuel consumption
Approach – System Testing

- Test individual modules and the integrated system in testbed vehicle before field operational test in fleets
Technical Accomplishments

• Eco-Routing module
 – Upgraded DynaNet with 3D street map and new traffic data
 – Developing methods for estimating intersection delays from smartphone-based GPS data with 20-second interval
Estimating Intersection Delays

Example log for path segment at intersection 1

<table>
<thead>
<tr>
<th>To Node</th>
<th>Total distance Traveled (m)</th>
<th>Base Speed Limit (mph)</th>
<th>Expected Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1378569</td>
<td>152.50</td>
<td>20</td>
<td>17.06</td>
</tr>
<tr>
<td>1378570</td>
<td>17.61</td>
<td>20</td>
<td>1.97</td>
</tr>
<tr>
<td>End (mid link)</td>
<td>82.96</td>
<td>28</td>
<td>6.63</td>
</tr>
</tbody>
</table>

Estimated delay at intersection 1 = 14.30 seconds

Actual delay = 14.35 seconds
Collaborations (1)

- University of California Riverside (university)
 - Prime contractor assuming leadership role
 - Conduct system research & development
 - Lead system testing & evaluation, reporting

- ESRI (industry)
 - Provide route planning & scheduling and GIS software packages
 - Provide technical support in the integration of its software products with other system components

- NAVTEQ (industry)
 - Provide 3D digital map and real-time & historical traffic data
 - Provide technical support in the integration of its products with other system components
Collaborations (2)

• Beat the Traffic (small-business enterprise)
 – Provide GPS data from its smartphones app users
 – Develop methods to detect and model intersection delays on arterial and local roads using these GPS data

• Earthrise Technology (small-business enterprise)
 – Provide vehicle on-board diagnostics and telematics devices
 – Provide software development and technical support services related to its devices

• Automatiks (small-business enterprise)
 – Provide system development, configuration, and installation of the in-vehicle device and its wireless connectivity with the system server
Collaborations (3)

• Riverside Transit Agency (local government)
 – Allow a subset of its paratransit fleet to be equipped with the system technology
 – Provide staff support during the field operation test of the system

• California Department of Transportation (state government)
 – Allow selected passenger cars from its extensive vehicle fleet to be equipped with the system
 – Provide staff support during the field operation test of the system

• University of California Berkeley (university)
 – Provide input into the design of the system through a series of expert interviews
 – Evaluate drivers’ perception towards the system through before-and-after surveys
Proposed Future Work (FY12)

• Eco-Routing Module
 – Calibrate Energy Operational Parameter Set (EOPS) for vehicles in the test fleets
 – Integrate EOPS with route planning/scheduling software
 – Perform system module testing

• Eco-Driving Feedback Module
 – Design types, properties, and media of feedback
 – Design feedback algorithms
 – Implement Eco-Driving feedback software
 – Integrate the software with OBD firmware
 – Perform system module testing
Proposed Future Work (FY13)

• Eco-Score and Eco-Rank Module
 – Design Eco-Score and Eco-Rank calculation algorithms
 – Design module’s user interfaces
 – Implement Eco-Score and Eco-Rank module software
 – Perform system module testing

• Algorithm Updating Module
 – Design algorithm updating methodologies
 – Design module’s user interfaces
 – Implement algorithm updating module software
 – Perform system module testing

• System Integration
 – Set up system server and communication links
 – Perform full system testing
Summary

• The proposed driver feedback system are designed to improve fuel efficiency of vehicles in multiple processes of trip-making, from planning to routing to driving.

• The research team possesses strong collaborations between academic institutions, corporations, small-business enterprises, and state and local governments.

• The research team is well positioned for work planned next year.
Technical Back-Up Slides
Dynamic Roadway Network (DynaNet)

- Google Earth or Google Maps interfaces
- Real-time probe vehicle data (for freeways and surface streets)
- Real-time data from other sources
- Real-time PeMS data (for freeways)
- Historical data from travel demand or traffic simulation models
- Underlying digital roadway network with speed limit info
Energy Operational Parameter Set (EOPS)

\[
\ln(f_k) = \beta_0 + \beta_1 v_k + \beta_2 v_k^2 + \beta_3 v_k^3 + \beta_4 v_k^4 + \beta_5 g_k
\]

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Standard Error</th>
<th>t Stat</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta_0)</td>
<td>6.804318E+00</td>
<td>5.32E-02</td>
<td>128.0</td>
</tr>
<tr>
<td>(\beta_1)</td>
<td>-1.402186E-01</td>
<td>7.32E-03</td>
<td>-19.2</td>
</tr>
<tr>
<td>(\beta_2)</td>
<td>3.921384E-03</td>
<td>3.14E-04</td>
<td>12.5</td>
</tr>
<tr>
<td>(\beta_3)</td>
<td>-5.197728E-05</td>
<td>5.15E-06</td>
<td>-10.1</td>
</tr>
<tr>
<td>(\beta_4)</td>
<td>2.573800E-07</td>
<td>2.85E-08</td>
<td>9.0</td>
</tr>
<tr>
<td>(\beta_5)</td>
<td>1.372520E-01</td>
<td>8.65E-04</td>
<td>158.7</td>
</tr>
</tbody>
</table>