SuperTruck
Development and Demonstration of a Fuel-Efficient Class 8 Highway Vehicle
Vehicle Systems
DOE Contract: DE-EE0004232

P.I.: Pascal Amar, Volvo Technology of America

2012 Annual Merit Review
Washington, DC
May 17, 2012

Project ID: VSS081

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Overview

Timeline
Start: June 2011
End: June 2016
17% complete

Budget
Total Cost: $37.99M
Cost share: $19.07M
FY11 funding: $3.82M
FY12 funding: $4.40M

Barriers
- Rapid increase in system complexity
- Conflicting impacts of new technologies
- Availability of analytical tools & methods

Lead: Volvo Technology of America

Partners
- VOLVO
- Grote
- PENNSTATE
- FREIGHT WING

Collaborations
- HENDRIX
- MICHELIN
- ArvinMeritor
- ExxonMobil
- ALCOA WHEELS
Relevance

• In support of DOE’s mission
 “[…]
 more energy efficient and environmentally friendly highway transportation […]”

• Project Objectives
 Objective 1 50% better freight efficiency than ‘best in class’ 2009 highway truck
 Objective 1a 50% Brake Thermal Efficiency
 Objective 2 55% Brake Thermal Efficiency Concept

• Reporting Period Objectives
 – Define baseline
 – Develop tools & methods
 – Refine technology roadmap
Relevant Research

This material is based upon work supported by

- DOE & NETL under Award Number DE-EE0004232
- DOE & NETL under Award Number DE-FC26-07NT43222
- DOE Project ID VSS006, Reduce Truck Aerodynamic Drag w/ LLNL
- DOE Project ID VSS022, CoolCab Thermal Load Reduction project w/ NREL

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Timeplan

<table>
<thead>
<tr>
<th>Year</th>
<th>Baseline Tests</th>
<th>Technology Development</th>
<th>Engine & combustion Modeling</th>
<th>Concepts Evaluation</th>
<th>Complete vehicle modeling</th>
<th>Validation</th>
<th>Optimization</th>
<th>55% BTE Demo</th>
<th>Complete Vehicle Integration</th>
<th>Optimization</th>
<th>Demo</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td></td>
</tr>
</tbody>
</table>
Approach – Technology Roadmap

SuperTruck

Complete Vehicle
- Control
 - Torque Management
 - Energy Management
 - ADAS e-horizon
- Auxiliaries
 - Smart Air Compressor
 - High Eff. Alternator
 - Efficient Power Steering
- Reduced Air Drag
- Weight Reduction
- Hotel Mode
- Efficient Axle
- Low Rest. Tires
- Advanced EATS
- Advanced Trans.

Powertrain
- Advanced Engine
- Down-sizing
- Waste Heat Recovery
- Improved Accessories
- Combustion Systems
- Down-speeding
- 6x2 Tandem
- Super Insulation

50% Brake Thermal Efficiency

2013 Concept
2016 Concept
Approach – System Simulations

- **Global Simulation Platform**
 - Detailed physical or empirical component models
 - Evaluate complete vehicle concepts

- **Complete Vehicle Aerodynamics**
 - Balance powertrain and aero requirements
 - Optimize complete vehicle geometry

- **Advanced Combustion Simulation**
 - Evaluate new combustion concepts
Approach – Lightweight Materials

- **Aluminum/Steel cab concept**
 - Investigate new bonding techniques
 > 100lb lighter

- **Axle & suspension**
 - Smart 6x2 carrier
 - Lighter and composite materials
 Up to 800lb lighter

- **Aluminum 1-piece driveshaft**
 ~ 100lb lighter
Approach – Reduced Parasitic Losses

- **Advanced Lighting Concepts**
 - LightForm™
 - Energy Efficient
 - Aerodynamic
 - LED lighting
- **Low-friction tires**
- **Low viscosity oils & lubricants**
- **Carrier lube level control**
- **Complete vehicle integration**

Enables new harness concepts
→ lighter & less copper
Approach – Aerodynamics

- Mitigate conflicting trends
 - Increased powertrain cooling requirements
 - Need for lower tractor aerodynamic drag
 - Increased packaging complexity

- Optimize complete vehicle
 - Leverage results from prior DOE grant projects and proprietary studies
 - Select tractor/trailer geometries for optimal combined performance

- Verify selected geometries
 - on-road fuel economy and operation testing
Approach – Powertrain Improvements

- Evaluate portfolio of technologies enabling increased engine efficiency
- Each bin includes many sub-sets of technologies
- Select concepts for optimal powertrain efficiency
- Integrate complete powertrain into concept evaluation vehicles

BTE Improvement: Impact of Technologies

- Combustion Systems
- Recover Wasted Heat
- Improve Air Handling
- Downspeed Engine
- Downsize Engine
- Improve Accessories
- Reduce Friction
- Efficient Aftertreatment
- Improve Idle Efficiency

- 2013 System
- 2016 System
Achievements – System Simulations

- Global Simulation Platform
 - Baseline and concept vehicles modeled

- Complete Vehicle Aerodynamics
 - First results with current vehicle configuration

- Advanced Combustion Simulation
 - Method for 55% thermal efficiency concepts evaluation established

→ These tools will be fully verified and running by mid 2012
Achievements – Lightweight Materials

- **Steel Cab/ Aluminum Sleeper concept**
 - Concept defined & prototype material on order

- **Axle & suspension**
 - Concept truck conversion complete

 \[improved \textit{ safety with better ride & handling}\]

 - Ultra-lightweight trailer build in progress with prototype axle & suspension

- **Aluminum 1-piece driveshaft**
 - Concept truck conversion planned in April 2012
Achievements - Reduced Parasitic Losses

• Advanced Lighting Concepts
 – LightForm marker & side turn lamps designed
 – Lightweight prototype harness designed and built
 – LED lighting concepts defined, prototype parts on order
 – Components will be installed on ultra-lightweight trailer in April

• Concept Truck Conversion
 – 1st generation low-friction tires
 – 6x2 SMARTandem with Lube Level Control
 – Low viscosity oils and lubes
Achievements – Aerodynamics

- Packaging & cooling study shows no negative impact of new powertrain concepts on aero drag
- CFD results exceed expected improvements compared with baseline
- 1st gen optimized aero devices are designed and being fabricated for on-road validation with concept vehicle

>22% overall drag reduction
Achievements – Efficiency Increase

- Current simulation results are aligned with Efficiency Roadmap
- Powertrain efficiency improvements so far confirmed with engine bench test
- Improvements will be verified through on-road testing of concept vehicle during 2012 - 2013
Milestones

<table>
<thead>
<tr>
<th>Milestone</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline vehicle defined</td>
<td>Completed</td>
</tr>
<tr>
<td>Concept Evaluation Vehicle 2012 - 2013</td>
<td></td>
</tr>
<tr>
<td>Concept selection – Complete Powertrain selection</td>
<td>Completed</td>
</tr>
<tr>
<td>Concept selection – Weight Reduction</td>
<td>Completed</td>
</tr>
<tr>
<td>Concept selection – Parasitic Loss reduction</td>
<td>Completed</td>
</tr>
<tr>
<td>Concept selection – Idle Reduction</td>
<td>Delayed</td>
</tr>
<tr>
<td>Concept selection – Aerodynamic Optimization</td>
<td>Completed</td>
</tr>
<tr>
<td>Technology for Power Steering Pump</td>
<td>Completed</td>
</tr>
<tr>
<td>Concept Evaluation Vehicle Built</td>
<td>Completed</td>
</tr>
</tbody>
</table>

Upcoming Milestones

<table>
<thead>
<tr>
<th>Milestone</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline tests completed</td>
<td>On track</td>
</tr>
<tr>
<td>55% Thermal Efficiency: 1<sup>st</sup> concept selection</td>
<td>On track</td>
</tr>
<tr>
<td>Powertrain ready for vehicle installation</td>
<td>On track</td>
</tr>
</tbody>
</table>
Future Work

- Validate **simulation** tools with on-road test measurements
- Verify **aerodynamic** improvements on full scale concept vehicle
- Complete **powertrain** testing and integration for concept evaluation
- Verify accumulated **weight savings**
- Collect data to persuade Industry of the benefits
 - light gauge harness systems
 - operation of aerodynamic trailer geometries

→ Determine optimal geometry for SuperTruck demonstrator
→ Determine powertrain concept for SuperTruck demonstrator
Summary

• Relevance
 – Project objectives are key enablers to energy efficient highway transportation
 – Approach to date has focused on method development to address barriers

• Achievements
 – Engine bench testing confirms expected thermal efficiency gains
 – CFD simulation results exceed planned aero drag improvements
 – Concept vehicle is ready for first evaluation in April
 – Milestone Completion on target

• Future Work
 – Validate analytical tools with measurements from baseline & concept vehicles
 – Complete evaluation of technologies in roadmap
 – Freeze concept selection for SuperTruck demonstrator
Partners & key collaborations

Volvo Technology of America: Principal Investigator, Project Office, concept simulations
Volvo Group Truck Technology: Complete vehicle integration & optimization, vehicle testing
Volvo Group Powertrain Engineering: Efficient complete powertrain solutions
Freight Wing: Optimized aerodynamic geometries and devices
Grote: Advanced lighting systems
Penn State University: Advanced combustion modeling and simulation
Hendrickson: Lightweight trailer axle and suspension concept
ExxonMobil: Advanced fuels and lubricants
Alcoa Wheels: Lightweight wheels
Michelin: Advanced low-friction tires
Meritor: high-efficiency tractor axles