Vehicle and Systems Simulation and Testing

Lee Slezak
US Department of Energy
Office of Vehicle Technologies
OVT Program Structure

OVT/PHEV Program Mgmt.

Industry/Gov’t Collaboration

Technology Assessment
- Benchmarking
- Analytical Studies
- Risk Assessment

Research & Development
- Energy Storage
- Power Electronics & Electric Motors
- Engines and Fuels
- Vehicle Efficiency Technologies

Testing & Validation
- Standard Procedures
- Lab Testing and Validation
- Field Reliability Testing and Validation
- Field Testing and Demonstration

Deployment Issues
- Grid Interactions
- Automotive-Utility Industry Interactions
- Incentives
- Education and Learning Demonstration
- Codes & Standards
Focus Area activities provide direct and indirect support for evolution of high efficiency vehicles as real world product offerings.

Component & Systems Evaluation
- Validate performance of advanced components in a systems context via R&D activities in Virtual Vehicle Environment

Modeling & Simulation
- Develop & use modeling tools to support development and analysis of vehicle components & systems
- Focus & accelerate R&D activities on technologies of greatest potential for petroleum displacement

Stakeholders & Partners
- OEMs
- Utilities
- Consumers
- Fleet Owners
- VTP Programs
- DOE Programs
- Policy Makers

Lab & Fleet Vehicle Evaluation
- Benchmarking of real-world performance for advanced vehicle technologies in support of VTP activities
- Validation of vehicle modeling/simulation platforms
- Collection of 112M miles of on-road operational vehicle test data by 2015

Vehicle Systems Optimization
- Reduce auxiliary and parasitic loads that significantly affect vehicle efficiency

Codes & Standards Development
- Development of a unified, consistent set of standards for grid-connected vehicle infrastructure, communication, testing, safety, etc.
- Eliminate barriers in a way that doesn’t impede technology advances & smooth transition of advanced technologies
Modeling & Simulation

- Develop Modeling Tools
 - Autonomie
 - System Models
- Support GPRA Reporting

- Vehicle & Component Simulations
 - Configurations
 - Control Methods
 - Requirements
 - Sizing
 - Interactions
Component/Systems Evaluations

Hardware in the loop (HIL) and advanced controls simulation speeds development of new solutions.

- MATT (Modular Automotive Technology Testbed) development and utilization
- PHEV energy management strategy (coordination with University of Tennessee)
- Smart Charging demonstration

Vehicle components are Controlled with simulated components

Component and control algorithm tests developed on the bench
Structured, repeatable testing methods and real-world usage

- Advanced Vehicle Testing Activity (AVTA) data collection of advanced technology light duty in-use vehicles
- Advanced Powertrain Research Facility (APRF) vehicle test and test development
- Medium duty drive cycle analysis and route optimization
- Truck cab environmental control optimization (Cool cab) and evaluation
- OEM CRADAs

~ 75 Testing partners in the U.S. and Canada,
 - Utilities
 - State & local governments
 - Universities and colleges
 - Private companies/advocacy organizations
 - Canadian provinces
 - U.S. military organizations
 - OEMs & conversion companies
Recommended Practices for Plug-in Vehicles, Charging Equipment and Grid Connectivity

- SAE standards committees participation
- Development and validation of standards
- Technology development

National Recommended Practices for permitting and installation of charging equipment (streamlined/automated process)
Heavy vehicle optimization poses a growing opportunity for directly impacting petroleum displacement.

- Aerodynamic drag reduction
- Friction and wear reduction
- PACCAR CRADA for nucleate boiling
- Boundary layer lubrication
- TARDEC/ANL fuel economy demonstrator (FED)
- Parasitic & auxiliary load reduction
- Navistar Hybrid School Bus
- Auxiliary power units
- SuperTruck
Vehicle & Systems Simulation & Testing

<table>
<thead>
<tr>
<th>Project</th>
<th>FY 2010 Appropriation</th>
<th>FY 2011 Current Appropriation</th>
<th>FY 2012 Request</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulation & Validation</td>
<td>5,525</td>
<td>5,260</td>
<td>5,000</td>
</tr>
<tr>
<td>HIL & Component Evaluations</td>
<td>2,350</td>
<td>1,950</td>
<td>2,000</td>
</tr>
<tr>
<td>Laboratory & Field Evaluations</td>
<td>27,215</td>
<td>25,690</td>
<td>26,500</td>
</tr>
<tr>
<td>Codes & Standards</td>
<td>2,225</td>
<td>3,560</td>
<td>5,500</td>
</tr>
<tr>
<td>Heavy Vehicle Systems Optimization</td>
<td>1,790</td>
<td>2,225</td>
<td>0</td>
</tr>
<tr>
<td>Vehicle Systems Optimization</td>
<td>0</td>
<td>0</td>
<td>7,500</td>
</tr>
<tr>
<td>Wireless Charging</td>
<td>0</td>
<td>0</td>
<td>8,000</td>
</tr>
<tr>
<td>Total, Vehicle Systems</td>
<td>39,105</td>
<td>38,685</td>
<td>54,500</td>
</tr>
</tbody>
</table>

American Recovery and Reinvestment Act Funds

<table>
<thead>
<tr>
<th>Program</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transportation Electrification (FY 2009)</td>
<td>400,000</td>
</tr>
<tr>
<td>Electric Drive Technology Demonstration</td>
<td>360,000</td>
</tr>
<tr>
<td>Education & Outreach</td>
<td>40,000</td>
</tr>
</tbody>
</table>
Largest US EV & Charger Deployment Ever

- Approximately $400 million in federal funding to
 - Automotive and Charging Industry
 - Educational Institutions
- Deploys over 13,000 electric-drive vehicles & 22,000 charging stations
- Collect detailed data
- Two EVSE specific projects
Thank you