A new class of high ZT doped bulk nanothermoelectrics through bottom-up synthesis

Ganpati Ramanath1,3 and Theo Borca-Tasciuc2,3

1Department of Materials Science & Engineering
2Department of Mechanical Engineering
3Rensselaer Nanotechnology Center
Rensselaer Polytechnic Institute, Troy, NY 12180.
Acknowledgements

• Students and Post-Doctoral Associates

 Ramanath group: Dr. Rutvik J. Mehta, Hong Zhu, Peter O’Brien (will be at Intel), Devender, Priyanka Jood (Australia), Dr. C. Karthik (Now at Idaho), Dr. A. Purkayastha (Now at Laird)

 Borca-Tasiuc group: Dr. Yanliang Zhang (now at GMZ), Liang Han, Emmanuel Sachdeva, Ed Castillo, Matt Belley, Wei Jiang.

• Collaborators

 Prof. Richard W. Siegel, Prof. Yunfeng Shi, Prof. Pawel Keblinski, Prof. Masashi Yamaguchi (RPI), Drs. Dan Fischer and Joe Woicik (Brookhaven), Prof. Shi Dou (Wollongong, Australia), Prof. R. Ramprasad (U Conn).

• Funding

 –Department of Energy S3TEC– MIT EFRC
 –Marlow/DARPA, Intel SRC, IBM, Mitsubishi/Kaiteki
 –National Science Foundation (ECCS, CMMI, DMR, and other grants)
 –NRI-NIST, and NY State
Solid-state electrical ⇌ thermal conversion

Heat management/refrigeration

Energy harvesting
Thermoelectrics, a tug-of-war of properties!

\[ZT = \frac{a^2 \sigma}{\kappa} T \]

Thermal conductivity

\[= \kappa_L + \kappa_c \]

- Nano \(\Rightarrow \) \(\kappa_L \downarrow \)
- But \(a^2 \sigma ? \)
- For p- \text{and} n-type ?
High figure of merit nanostructured thermoelectrics

Best materials – Group V + VI, e.g., Bi$_2$Te$_3$

- Quantum confinement
 - Increase σ and α
- Interface phonon scattering
 - κ decrease
Surfactant-directed nanostructure sculpting and assembly

Surfactant-induced branching through twinning

• Core-shell structures
• Nanoscale features controlled by beaker processing
 – Twining about (221) mirror plane

Sulfurized antimony selenide: nanowire \rightarrow nanotube conversion

- Large $\alpha \sim 1600 \, \mu V/K$
- Low $\sigma \sim 10^{-2} - 10^{-5} \, \Omega^{-1} m^{-1}$
- \uparrow Microwave dose: nanowire \rightarrow nanotube
- TGA \rightarrow sulfurization

Colossal electrical conductivity enhancement in Sb$_2$Se$_3$

- 10^4-10^{10} higher than bulk; get $\sigma \sim 10 - 10^5 \, \Omega^{-1}m^{-1}$
- Only nanowires (S gradients) show
 - high σ and ambient sensitivity
 - Shallow dopant levels from sulfur-surface states

Te-heterostructuring-induced α tuning

- α greater than bulk
 - Heterointerfaces
 - hot carrier filtering

Single-crystal chalcogenide nanoplates and their assemblies

- Shaping, sizing, doping and nanostructure/electronic structure control
 - High ZT; both n- and p-type
 - Very low κ and potential for $\alpha^2\sigma$ enhancement

Pnictogen chalcogenide nanoplate building blocks

ZT increase for n- and p-type nanobulk thermoelectrics

- ZT=1.1 n-Bi$_2$Te$_3$, ZT=0.75 p-Sb$_2$Te$_3$ with no alloying!!
- ZT increases monotonically up to 0.95 p-Sb$_2$Te$_3$ at 400 K
- Blind-samples verification at Marlow and Boston College

Stoichiometry, composition

n-type

p-type

Seebck

Te at.%

62

Higher ZT

Nanobulk alloys/composites

Doping

Heterostructuring
50-75% κ_L diminution due to nanograin and nanopores

Isotropic properties of bulk-nano thermoelectrics

- Random texture
- Isotropic properties
- Near-stoichiometric
- 0.01-0.25 at.% S doping

\[p-\text{Bi}_{0.5}\text{Sb}_{1.5}\text{Te}_3 \]

Electrical conductivity \(\sigma \times 10^5 (\Omega^{-1} \text{m}^{-1}) \)

Axial (A) Radial (R)

\begin{align*}
\text{Bi}_{0.5}\text{Sb}_{1.5}\text{Te}_3 & \quad \text{Bi}_2\text{Te}_3 & \quad \text{Sb}_2\text{Te}_3 \\
1.5 & \quad 2.0 & \quad 1.5 \\
1.0 & \quad 1.5 & \quad 1.0 \\
0.5 & \quad 1.0 & \quad 0.5 \\
0.0 & \quad 0.5 & \quad 0.0
\end{align*}

Sulfur doping and oxidation resistance

- **Sulfur is in different chemical states**
- **Surfactant capping inhibits oxidation**
 - No oxygen-free handling needed
 - Months/years storage in ambient

Effects of sulfur doping on power factor

- High α, majority carrier reversal, high σ
 - S doping, Fermi shift, DoS alteration near Fermi level
 - Non-linear dependence on carrier concentration

Scanning Thermoelectric μ-Probe

- Simultaneous κ and α on films and nanobulk
- Non-contact κ
- Validated using alternative techniques

Nanobulk composite alloys: α tuning, κ_L decrease, ZT increase

Bi_2Te_3 – n-type

Sb_2Te_3 – p-type

Al-doped ZnO nanocomposites for high ZT @ high T

- Doping + nanostructuring \(\Rightarrow\) ZT=0.45 ….50% increase over bulk at 1000 K

Ultralow thermal conductivity due to nanostructuring

- Nanograins, nanoprecipitates, nanopores
 - 20-fold lower κ than bulk

Retention of high α and σ

- Shallow dopant levels
 - Acoustic phonon scattering at high T—high σ
 - 40-95% higher α than non-nano \Rightarrow high ZT

Thank you!!