U.S. Department of Energy
Vehicle Technologies Program Overview

Annual Merit Review and Peer Evaluation Meeting
May 9-13, 2011

Patrick B. Davis
Program Manager
U.S. Oil Dependence Is Driven By Transportation

U.S. Oil Consumption by End-Use Sector
19.1 Million Barrels per Day (2010)

Transportation
94% Oil Dependent
• On-Road vehicles are responsible for ~80% of transportation oil usage

Electric Power
1% Oil Dependent

Residential and Commercial
17% Oil Dependent

Industry
41% Oil Dependent

Source: DOE/EIA Annual Energy Review, April 2010
New Oil Reserves are Harder to Find

- World oil production has hardly grown at all since 2005.
- >$1B/day for imported petroleum.

Source: Jeff Rubin, “Why the World is About to Get a Whole Lot Smaller”

World Oil Production
- 2005: 84.58 mbpd
- 2006: 84.54 mbpd
- 2007: 84.40 mbpd
- 2008: 85.37 mbpd
- 2009: 84.24 mbpd
- 2010: 87.3 mbpd

The Cost of Oil is More than Monetary
Realizing Benefits of Vehicle Technology Takes Time

Vehicle Technology Penetration

Years After Initial Significant Use

- Front Wheel Drive
- Lockup
- Variable Valve Timing
- Port FI
- Multi-Valve
- CVT

U.S. Vehicle Market
- About 240 million light-duty vehicles on the road
- Approximately 11.5M new cars & light trucks sold in 2010; the average was 15.7 M/yr from 2002-2007
- Hybrid vehicles at about 3% of sales

It has taken about 15 – 20 years for a technology to reach maximum market penetration.

President highlights National Clean Fleets Partnerships as part of his goal of reducing America's imported oil.

President calls out goal of 1 million PHEVs on the road by 2015 in State of the Union address.

Vice President Biden announces 200M for community infrastructure project.
“With more research and incentives, we can break our dependence on oil with biofuels, and become the first country to have a million electric vehicles on the road by 2015”

- President Barack Obama
2011 State of the Union

“To make sure we stay on this goal we’re going to need to do more — by offering more powerful incentives to consumers, and by rewarding the communities that pave the way for the adoption of these vehicles”

- President Barack Obama
Remarks on Energy Security
Georgetown University, March 30, 2011
Analysis Informs Strategy

Only Options That Achieve Very High Petroleum Reductions and Very Low Carbon Emissions Combine Electric Drive With Low Carbon Fuels

<table>
<thead>
<tr>
<th>Petroleum Use, BTUs/Mile</th>
<th>GHG Emissions, gCO2/Mile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gasoline (Today's Vehicle)</td>
<td>450</td>
</tr>
<tr>
<td>Gasoline</td>
<td>340</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>270</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>235</td>
</tr>
<tr>
<td>Diesel</td>
<td>185</td>
</tr>
<tr>
<td>Corn Ethanol (E85)</td>
<td>180</td>
</tr>
<tr>
<td>Cellulosic Ethanol (E85)</td>
<td>220</td>
</tr>
<tr>
<td>Cellulosic Ethanol (E85) & U.S. Grid Mix</td>
<td>180</td>
</tr>
<tr>
<td>Gasoline & Ultra-low Carbon Renewable</td>
<td>230</td>
</tr>
<tr>
<td>Gasoline & Ultra-low Carbon Renewable & U.S. Grid Mix</td>
<td>195</td>
</tr>
<tr>
<td>Cellulosic Ethanol (E85) & Ultra-low Carbon Renewable</td>
<td>155</td>
</tr>
<tr>
<td>Cellulosic Ethanol (E85) & U.S. Grid Mix</td>
<td>180</td>
</tr>
<tr>
<td>Cellulosic Ethanol (E85) & Ultra-low Carbon Renewable</td>
<td>155</td>
</tr>
<tr>
<td>U.S. Grid Mix</td>
<td>230</td>
</tr>
<tr>
<td>High-T High-T Electrolysis or Ultra-low Carbon Renewable</td>
<td>43</td>
</tr>
<tr>
<td>H2 - Coal Gasification w/ Sequestration</td>
<td>37</td>
</tr>
<tr>
<td>H2 - Biomass Gasification</td>
<td>37</td>
</tr>
</tbody>
</table>

Conventional Internal Combustion Vehicles

Hybrid Electric Vehicles

Plug-in Hybrid Electric Vehicles (power-split, 10-mile electric range)

Plug-in Hybrid Electric Vehicles (series, 40-mile electric range)

Battery Electric Vehicles (100-mile range)

Fuel Cell Electric Vehicles
Vehicle Technologies
Program Goals

Decrease petroleum dependency
Reduce greenhouse gases

Develop more energy efficient and environmentally friendly highway transportation technologies that enable America to use less petroleum. The long-term aim is to develop technologies that will provide Americans with greater freedom of mobility and energy security, with lower costs and lower impacts on the environment.
Battery and Electric Drive Technologies ($188.0M): Battery technology and prototype systems that provide full electric drive vehicle performance and reduce cost to $300/kWh. Motor designs that minimize or eliminate use of rare earth materials.

Vehicle and Systems Stimulation & Testing ($58.0M): Wireless charging, high efficiency HVAC systems and vehicle thermal load reduction, codes and standards for communications and power management between vehicles, chargers, grid.

Advanced Combustion Engine R&D ($49.0M): With the Off. of Science, develop predictive simulation computer model to optimize engine efficiency & reduce emissions and cost.

Materials Technology ($38.0M): Multi-material vehicle validation of 50% weight reduction of body and chassis.

Fuels Technology ($18.5): Expand work on engine and transmission lubricants to demonstrate 2% fuel efficiency improvement from improved lubricants (2015).

Outreach, Deployment, & Analysis ($236.5M): Support community based EV deployment initiatives focusing on competitive awards to establish infrastructure, local policy incentives and streamlined permitting processes.

Program Focus: Strategic research, development, and deployment activities supporting the goal of 1 million electric drive vehicles on U.S. roads by 2015

Budget Request

<table>
<thead>
<tr>
<th>Activity</th>
<th>Funding ($ in thousands)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FY 2010 Current Appropriation(^a)</td>
</tr>
<tr>
<td>Batteries and Electric Drive Technologies</td>
<td>98,566</td>
</tr>
<tr>
<td>Vehicle and Systems Simulation and Testing</td>
<td>43,732</td>
</tr>
<tr>
<td>Advanced Combustion Engine R&D</td>
<td>55,987</td>
</tr>
<tr>
<td>Materials Technologies</td>
<td>49,303</td>
</tr>
<tr>
<td>Fuels Technologies</td>
<td>23,421</td>
</tr>
<tr>
<td>Outreach, Deployment & Analysis</td>
<td>33,214</td>
</tr>
<tr>
<td>TOTAL</td>
<td>304,223</td>
</tr>
</tbody>
</table>

\(^a\) SBIR/STTR removed.

Pursuing advanced vehicle technologies to reduce petroleum use and carbon emissions.
Advanced Technologies for High Efficiency Clean Vehicles

Batteries and Electric Drive
- Advanced Batteries
- Power Electronics
- Inverters
- Controllers & Motors

VSST
- Aerodynamics, Rolling Resistance & Accessory Loads
- Validation

Advanced Combustion Engine R&D
- Low Temp. Combustion R&D
- Emission Controls
- Light- & Heavy-Duty Engines
- Solid State Energy Conversion
- Health Impacts

Fuels Technology
- Bio-Based Fuels
- Clean/Efficient Combustion Fuel Characteristics
- Fischer-Tropsch Fuels & Blendstocks
- Advanced Lubricants

Outreach, Deployment and Analysis
- EPAct/EISA
- Rulemaking
- Deployment
- Student Competitions
- Graduate Automotive Technology Education
- Safety, Codes, & Standards

Materials Technology
- Lightweight Structures
- Composite Development
- Processing/Recycling/Manufacturing
- Design Data Test Methods
- High Temperature Materials Laboratory
Hybrid-Electric Systems
Petroleum Displacement via Fuel Substitution & Improved Efficiency

Administration Goal: 1 Million PHEVs by 2015

Types of Vehicles and Benefits

<table>
<thead>
<tr>
<th>Type</th>
<th>Model</th>
<th>Benefit</th>
<th>System Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEV</td>
<td>Toyota Prius</td>
<td>50 MPG</td>
<td>PHEV Battery Cost</td>
</tr>
<tr>
<td>PHEV</td>
<td>Chevy Volt</td>
<td>100 MPGe</td>
<td>APEEM Cost</td>
</tr>
<tr>
<td>EV</td>
<td>Nissan Leaf</td>
<td>All Electric</td>
<td></td>
</tr>
</tbody>
</table>

System Cost

<table>
<thead>
<tr>
<th>Year</th>
<th>PHEV Battery Cost (per kW·h)</th>
<th>APEEM Cost (per kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>$1,000 - $1,200</td>
<td>$22</td>
</tr>
<tr>
<td>2010</td>
<td>$700 - $950</td>
<td>$19</td>
</tr>
<tr>
<td>2014</td>
<td>$500</td>
<td>$17</td>
</tr>
<tr>
<td>2012</td>
<td>$300</td>
<td>$12</td>
</tr>
<tr>
<td>2015</td>
<td>$120</td>
<td>$12</td>
</tr>
</tbody>
</table>

Targets and Status

- **2014 PHEV**: Battery that has a 40-mile all-electric range and costs $3,400
- **Status**: $8,000-$11,000 for a PHEV 40-mile range battery
- **2015 PEEM**: Cost for electric traction system no greater than $12/kW peak by 2015
- **Status**: Current cost of the electric traction system is $40/kW
Advanced Combustion Engine R&D

Benefits all Vehicle Classes, HEV and PHEV

Light-Duty
- **Cars**
 - Power Rating: 100-300hp
 - 25-40% Improvement

Trucks
- Power Rating: 200-400hp
- 25-40% Improvement

Heavy-Duty
- **Class 2b-8**
 - Power Rating: 250-600hp
 - Up to 30% Improvement

Accomplishments

- Demonstrated light-duty dual-fuel combustion engine concept with 77 percent higher efficiency (UW and ORNL)
- Demonstrated 45 percent efficient light-duty multi-cylinder diesel engine (ORNL)
- Demonstrated 15 percent increase in heavy-duty engine efficiency: in-cylinder improvements and organic Rankine cycle (Cummins)
- Developed more efficient models to simulate combustion and emission control processes (LLNL, LANL, SNL, ORNL, PNNL)
- Developed tubular thermoelectric waste energy recovery generator for Ford Fusion and BMW X-6 (BSST)

Targets and Status

2015 Passenger Vehicle: Improve gasoline vehicle fuel economy by 25%, diesel vehicle fuel economy by 40%, compared to 2009 baseline

Status: Current fleet average fuel economy of 29.2 mpg; six ATP-LD cooperative awards to demonstrate fuel economy goals by 2015

2015 Commercial Engine: Improve commercial diesel engine efficiency by >20% compared to 2009 baseline, 30% by 2018

Status: Current commercial engine efficiency is up to 42%; three SuperTruck awards to demonstrate 50% efficiency in Class 8 trucks by 2015
For 10% reduction in vehicle weight the result is 6-8% improvement in fuel economy

Weight Reduction Demonstrations
- Using textile precursor, demonstrated carbon fiber with strength 540 KSI (goal 250 KSI), modulus 38 MSI (goal 25 MSI)
- Validated that cost for high volume manufacturing of textile precursor would be $5.74/lb (goal $5.00/lb)

Key Technology Advancements
- Demonstrated Mg-Steel welded joints with strength comparable to Mg-Mg welded joints.
- Implemented new testing method for characterizing material behavior at automotive crash speeds
- Released new forming guidelines for advanced steels

Targets and Status

2010 Target: 50% cost-effective weight reduction of the passenger vehicle body and chassis systems compared to 2002 vehicles.

2015 Target: Commercial introduction of thermoelectric coolers/heaters to replace vehicle A/C systems

2010 Status: Modeling shows that weight reduction of 50% is achievable but, but not at cost parity.

2010 Status: Using materials by design, new low cost/high performance thermoelectric materials were made and performance verified

Lightweighting improves fuel economy and reduces the demands on the powertrain and ancillary systems (e.g., braking)
Fuels & Lubricants

Renewable Fuels Standard: 36 Billion gallons per year by 2022

Accomplishments
- Completed DOE Intermediate Ethanol Blends Test Program – Primary data source for EPA waiver decision.
- Partnered with seven automotive companies and MIT to lower friction in the engine power-cylinder.

Future Directions
- Lubricant research – retrofit solution for vehicles in use.
- E15 deployment – develop retrofit fuel dispenser technology.
- Fuel effects research – enable advanced combustion regimes and next-generation fuels.

Targets and Status

2015 Fuel Target: Expand operational range of low-temperature combustion to 75% of light-duty Federal Test Procedure operating range.

2015 Lubricant Target: Demonstrate cost effective lubricant with 2% fuel economy improvement.

Status: E15 approved for 2001 and newer light-duty vehicles. Several hurdles to overcome to enable widespread deployment.

Status: Over 13 Billion gallons of renewable fuels used in 2010 – primarily ethanol with some biodiesel.

Over 90% of gas stations in the US currently dispense E10 year round
The Partnership provides a forum for frequent and detailed pre-competitive technical information exchange among experts in government and industry

- Accelerates technical progress by leveraging expertise
- Avoids duplication of effort
- Ensures industry commercialization needs inform DOE R&D targets

- www.vehicles.energy.gov/about/partnerships/freedomcar/index.html
- 70 key accomplishments demonstrating significant progress toward Partnership goals and targets

Third Biennial National Academies’ Review (July 2010):

- “There has been considerable progress…results since the program began in 2002 have been very significant”
- “The FreedomCAR and Fuel Partnership government/industry collaboration is working well…such precompetitive collaborations should be continued”
Systems Level Technology Development, Integration, and Demonstration for Efficient Class 8 Trucks

- All teams on schedule with their plans
- Base heavy-duty engines selected and benchmarked; scoped out pathways to achieving brake thermal efficiency target
 - Downselected engine modification strategies
 - Significant progress in developing waste heat recovery systems
- Baseline vehicle tested on specified routes and operational profiles.
 - Vehicle improvement targets for engines, aerodynamics, hybridization, APUs, and lightweighting defined for vehicles and trailers based on simulation. 50% improvement is achievable.
 - CFD and scale-model wind tunnel testing point to radically different truck and trailer integration.

Awardees

<table>
<thead>
<tr>
<th>Awardee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cummins, Inc.</td>
</tr>
<tr>
<td>Daimler Trucks North America</td>
</tr>
<tr>
<td>Navistar, Inc.</td>
</tr>
</tbody>
</table>
Clean Cities

Improving the speed and scale of market penetration for alternative fuel vehicles and infrastructure

Results: 3 Billion Gallons of Petroleum Fuels Displaced Since 1993

Goal: 2.5 Billion Gallons/year by 2020

~100 coalitions Serving 78% of the US population

Recent Deployment Awards:

Vehicle Deployment - More than 10,000 alt-fuel and EVs, displacing an estimated 38 million gal of petroleum fuels/year

Infrastructure - More than 1,250 new fueling and charging stations

Education - Hundreds of workshops, community events, workforce training and public outreach efforts

National Clean Fleet Partners: (deployment with hi-impact national fleets)

Thousands of stakeholders from businesses, city & state governments, transportation industry, community organizations, fuel providers
Progressive Automotive X PRIZE:
Winners were announced in September 2010, the winner, Edison 2, achieved 102 mpg. Competition also included an educational outreach program aimed at teaching K-12 students and the public in about advanced, energy-efficient vehicles.

Green Racing
A DOE, EPA and SAE International initiative, adopted by the American Le Mans Series in 2009, that encourages the transfer of cleaner, more fuel-efficient vehicle technologies from the racetrack to the driveway. Biobutanol, cellulosic ethanol and hybrid powertrains were introduced in the 2009 and 2010 seasons.

Inspiring the design of a new generation of super-efficient vehicles that dramatically reduce oil dependence and greenhouse gas emissions
EcoCAR Competitions

- DOE has a 23-year history of sponsoring Advanced Vehicle Technology Competitions.
- EcoCAR is one piece of the Department's broad commitment to educate the next generation of American innovators and support America's transition to a more efficient transportation sector.
- EcoCAR2 succeeds EcoCAR, and is a three-year collegiate level engineering competition that challenges teams of students to design vehicles that are both fuel efficient and meet strict emissions standards, without sacrificing performance, consumer appeal, or safety.

The EcoCAR Competition Finals will be held in June 2011 in Washington DC.
EcoCAR2 Participants
Other Accomplishments

- Autonomie release
- Launch of the Geo EVSE Forum
- $5M Communities based infrastructure pilot solicitation released

EDTA Innovation Motorcade

Secretary Chu Launches the Geo EVSE Forum
Recovery Act: $2.8 Billion

$1.5 Billion in funding to accelerate the manufacturing and deployment of the next generation of U.S. batteries

$500 Million in funding for electric-drive components manufacturing

$400 Million in funding for transportation electrification

Recovery Act will fund 48 new projects in advanced battery and electric drive components manufacturing and electric drive vehicle deployment in over 20 states: Directly resulting in the creation tens of thousands of manufacturing jobs in the U.S. battery and auto industries.

Facilities and Equipment Upgrade up to $105 Million: User Centers, offer expert staff and unique equipment capabilities that no one industrial entity can afford to maintain. Solicitation closed on 8/10/2009

SuperTruck and Advanced Combustion R&D $104.4 Million Solicitation:

Heavy-duty trucks are emphasized because they rapidly adopt new technologies and account for 20% of the fuel consumed in the United States. Solicitation closed 9/9/2009

Clean Cities: Petroleum Displacement through Alternative Fuel Vehicles and Expanded Alternative Fuel Infrastructure
We are on target to meet the administration's goals of 1 million PHEVs on the road by 2015.

- 21 new battery or battery component plants opening or expanding due to ARRA funding
- 18 vehicle electrification component plants opening or expanding due to ARRA funding
Patrick Davis
Program Manager
202-586-8061
patrick.davis@ee.doe.gov

www.vehicles.energy.gov