Hydrogen Embrittlement
Fundamentals, Modeling, and Experiment

P. Sofronis, I. M. Robertson, D. D. Johnson
University of Illinois at Urbana-Champaign

In collaboration with

B. Somerday
Sandia National Laboratories

DOE Hydrogen Pipeline Working Group Meeting
September 25, 2007
Hydrogen Embrittlement Mechanisms

- Several candidate mechanisms have evolved over the years each of which is supported by a set of experimental observations and strong personal views.

- Viable mechanisms of embrittlement
 - Stress induced hydride formation and cleavage
 - Metals with stable hydrides (Group Vb metals, Ti, Mg, Zr and their alloys)
 - Supported by experimental observations
 - Hydrogen enhanced localized plasticity (HELP)
 - Increased dislocation mobility, failure by plastic deformation mechanisms
 - Supported by experimental observations
 - Hydrogen induced decohesion
 - Direct evidence is lacking
 - Supported by First Principles Calculations (DFT)

- Degradation is often due to the synergistic action of mechanisms.
Embrittlement and Phenomenology

- Fractographic evidence suggests that low strength steels under static loading fail by
 - Hydrogen-assisted transgranular fracture induced by void or microcrack initiation through decohesion at internal interface (precipitate/inclusion or phase boundaries) ahead of a crack or notch accompanied by shear localization (HELP) leading to the linking of the void/microcrack with the tip of the crack
 - Fracture is controlled by yield strength level and microstructure

- Our contention, which needs to be verified through experiment, is that embrittlement
 - Under static load is a result of the synergistic action of the HELP and decohesion mechanisms
 - Under cyclic load can be intergranular (extremely dangerous mode of failure)
New Steel Microstructure-Oregon Steel Mills (OSM)

<table>
<thead>
<tr>
<th>API Grade</th>
<th>C</th>
<th>Mn</th>
<th>Si</th>
<th>Cu</th>
<th>Ni</th>
<th>V</th>
<th>Nb</th>
<th>Cr</th>
<th>Ti</th>
</tr>
</thead>
<tbody>
<tr>
<td>X70/80</td>
<td>0.04</td>
<td>1.61</td>
<td>0.14</td>
<td>0.22</td>
<td>0.12</td>
<td>0.000</td>
<td>0.096</td>
<td>0.42</td>
<td>0.015</td>
</tr>
</tbody>
</table>

acicular ferrite microstructure

Defects in microstructure, particularly precipitates, act as trap sites for hydrogen

- High dislocation density in some regions
- Irregular grain boundaries and small grains, indicative of microstructure that has not been fully recrystallized and recovered.

Relatively low precipitate density (inside the matrix)
Particle Composition
Energy Dispersive Spectroscopy

- a) EDS spectrum from particle
- b) Bright field TEM image of typical rectangular particle
- c) EDS spectrum from matrix

EDS analysis of fine precipitate inside ferrite grain suggests that precipitate is composed of Ti and Nb

(window detector: C, N, O not detected)
Steel Microstructure-Air Liquide Pipeline

Large intergranular particles (cementite)

Small intragranular particles (carbides with Nb and Ti)
Hydrogen Permeation Measurements

Ultrahigh vacuum (10^-9 torr)
Hydrogen pressure (10 torr)

Sample

Hydrogen Detector

Turbo pump

Permeability at room temperature

\[\Phi = 6.26 \times 10^{12} \frac{\text{H atoms}}{\sqrt{\text{MPa.m.s}}} \]

Integral of flux (atoms/m²)

\[\int J \, dt \]

Time lag

\[t_T = 6.8 \text{ s} \]

\[t_T = \frac{L^2}{6D_{\text{eff}}} \]

Oregon Steel Mills sample: thickness

L = 120 microns

Steady state:

\[J_\infty \]

Pressure:

\[P = 4.7 \text{ torr} = 627 \text{ Pa} \]
Thermal Desorption Spectroscopy

\[d \ln \left(\frac{\Phi}{T_{\text{max}}} \right) = \frac{W_B}{R} \]

\[d \left(\frac{1}{T_{\text{max}}} \right) \]

\[W_B = 74.3 \text{kJ/mole} \]

\[W_B = 70.5 \text{kJ/mole} \]
Materials Characterization

- TEM and TDS
 - will provide the trap binding energy.
- Permeation studies along with numerical simulation of diffusion transients
 - Will validate the trap binding energy determination
 - Will provide the trap density
- Coated samples (SECAT)

- Similar coordinated approach is needed to identify the fracture mechanisms under all loading scenarios
 - Rising load fracture toughness
 - Subcritical crack growth
 - Fatigue
Fracture Mechanics Approach to Design

Determine the stress, deformation, and hydrogen concentration fields ahead of an axial crack in a pipeline.

Case study related to subcritical crack growth experiments carried out at Sandia.
Cracked Pipeline: Problem Statement

\[C_L(t) = 0 \]

outer diameter: 40.64 cm

thickness: \(h = 9.52 \text{ mm} \)

crack depth: \(a = 1.9 \text{ mm} \)

initial CTOD: \(b_0 = 1.5 \mu\text{m} \)

\(a / h = 0.2 \)

dimensions are in mm

Hydrogen gas at pressure \(P \)

Hydrogen transport

15 MPa

| 15 MPa Hydrogen gas |

\[J(t) = 0 \]

\[C_L(t) \propto \sqrt{f} \]

\[C_L(t) = 0 \]

\[K : \text{Solubility} \]

\[J : \text{Hydrogen flux} \]

\[P : \text{Pressure} \]

\[f : \text{Fugacity} \]

September 2007
Hydrogen Transport Analysis

- **Diffusing hydrogen resides at**
 - Normal Interstitial Lattice Sites (NILS)
 - Trapping Sites \(C_T = \alpha \theta_T N_T \)
 - Microstructural heterogeneities such as dislocations, grain boundaries, inclusions, voids, interfaces, impurity atom clusters

- **Hydrogen populations in NILS and trapping sites are assumed to be in equilibrium according to Oriani’s theory**
 \[
 \theta_T = \frac{\theta_L}{1 - \theta_L} \exp \left(\frac{W_B}{RT} \right)
 \]
 \(W_B = \) Trap binding energy
 \(T = \) Temperature
 \(R = \) gas constant
 - Trap density may evolve dynamically with plastic straining

- **Hydrogen Transport Equation**
 \[
 \frac{D}{D_{\text{eff}}} \frac{dC_L}{dt} = DC_{L,ii} \left(\frac{DV_H}{3RT} C_L \sigma_{kk,i} \right)_{,i} - \alpha \theta_T \frac{\partial N_T}{\partial \varepsilon^p} \frac{d\varepsilon^p}{dt}
 \]
 - Note the effect of stress and plastic strain

\(\theta_L = \) NILS occupany
\(\beta = \) number of NILS per solvent atom.
\(N_L = \) number of solvent atoms/nl.
\(\theta_T = \) trap occupany
\(\alpha = \) number of sites per trap.
\(N_T = \) number of traps/m³.

\(d/dt = \) time differentiation
\(C = \) Hydrogen concentration
\(D = \) diffusion coefficient
\(D_{\text{eff}} = \) Effective diffusion
\(\frac{d}{dC_T} = \) accounting for trapping
\(\sigma_{kk} = \) hydrostatic stress
\(\varepsilon^p = \) plastic strain
\(V_H = \) partial molar volume of H
\(N_T = \) trap density

()_{,i} = \partial()/\partial x_i
Material: X70/80 acicular ferrite microstructure

\[C = K \sqrt{f} \quad f = P \exp \left(\frac{P d}{RT} \right) \quad d = 15.84 \text{ cm}^3/\text{mol} \]

\[K = 6.54696 \times 10^{18} \frac{\text{H atoms}}{\text{m}^3 \sqrt{\text{Pa}}} \]

\[C_0 = 2.084 \times 10^{21} \frac{\text{H atom}}{\text{m}^3} \quad P = 1 \text{ atm} \]

\[C_0 = 2.65932 \times 10^{22} \frac{\text{H atom}}{\text{m}^3} \quad P = 15 \text{ MPa} \]

Lattice diffusion coefficient

\[D = 1.271 \times 10^{-8} \text{ m}^2/\text{s} \]

Dislocation trapping modeling

\[N_T = \frac{\sqrt{2} \rho}{a} \quad W_B = 20.2 \text{ KJ/mol} \]

\[\rho = \begin{cases}
\rho_0 + \frac{\gamma}{0.15} \varepsilon^p & \varepsilon^p \leq 0.15 \\
\text{const.} & \varepsilon^p > 0.15
\end{cases} \]

\[\rho_0 = 10^{10} m^{-2}, \quad \gamma = 10^{16} m^{-2} \]
Hydrostatic Stress at Pressure 15 MPa

Geometric dimensions are in mm
Plastic Strain at Pressure 15 MPa

Geometric dimensions are in mm
Lattice Concentration Toward Steady State

C_L / C_0
Lattice Hydrogen Concentration at Steady State

Kumnick and Johnson trapping model

Time to steady-state: 2.0 hrs
\[t_{ss} = 8 \text{ min } 40 \text{ sec} \]

\[C_0 = 2.65932 \times 10^{22} \text{ H atom } / \text{ m}^3 \]

\[P = 15 \text{ MPa} \]

September 2007
Trapped Hydrogen Concentration at Steady State

Kumnick and Johnson trapping model

\[C_0 = 2.65932 \times 10^{22} \text{ H atom / m}^3 \quad P = 15 \text{ MPa} \]
Total Hydrogen Concentration at Steady State

Kumnick and Johnson trapping model

Time to steady-state is 2.0 hrs

\[t_{ss} = 8 \text{ min } 40 \text{ sec} \]

\[\frac{C_L + C_T}{C_0} \]

\[C_0 = 2.65932 \times 10^{22} \text{ H atom} / \text{m}^3 \quad P = 15 \text{ MPa} \]

September 2007
Total Hydrogen Concentration at Steady State

Dislocation trapping model

\[C_L + C_T \]

\[C_0 \]

\[C_0 = 2.65932 \times 10^{22} \text{ H atom/ m}^3 \]

\[P = 15 \text{ MPa} \]

September 2007
Full Field (pipeline) vs Boundary Layer Solution (laboratory specimen)

\[\frac{\sigma_{kk}}{3\sigma_0} \]

Elastoplastic FEM full-field solution \(P = 15 \text{ MPa} \)

Modified Boundary Layer
\[K_I = 34.12 \text{ MPa} \sqrt{\text{m}} \]
\[\frac{T}{\sigma_0} = -0.316 \]

\(b = 6.61 \mu \text{m} \)

\(b = 6.31 \mu \text{m} \)

\[\frac{a}{h} = 0.2 \]

September 2007
Full Field (pipeline) vs Boundary Layer Solution (laboratory specimen)

Neglecting the T-stress in the MBL formulation fails to predict the true stress

\[
\frac{\sigma_{kk}}{3\sigma_0}
\]

- Elastoplastic FEM full-field solution $P = 15$ MPa $b = 6.61 \ \mu m$
- Modified Boundary Layer $K_I = 34.12 \text{ MPa}\sqrt{\text{m}}$ $T/\sigma_0 = -0.316$ $b = 6.31 \ \mu m$
- Modified Boundary Layer $K_I = 34.12 \text{ MPa}\sqrt{\text{m}}$ $T/\sigma_0 = 0$ $b = 6.14 \ \mu m$

\[
a/h = 0.2 \quad \frac{R}{b}
\]
Full Field (pipeline) vs Boundary Layer Solution (laboratory specimen)

Full-field solution: \(t_{ss} = 8' : 40'' \)
MBL approach: \(t_{ss} = 6' : 40'' \)
Fracture Mechanics Assessment

Constraint based fracture mechanics: J-T controlled fracture

Laboratory Specimens

- The deep-notch toughness data in the presence of hydrogen need not necessarily lead to a conservative fracture toughness assessment for shallow cracked geometries as is commonly assumed in the absence of hydrogen

- Shallow crack are attracting hydrogen by plasticity so they, too, are degraded

- Deep-notch cracks are attracting hydrogen by the hydrostatic constraint constraint

Good news

Determine this fracture locus experimentally (Hydrogen effect?)
Modeling the Fracture Process

Transient separation

[Mishin et al., 2002]

\[
\sigma(c, q) = \frac{27}{4} \sigma_{\text{max}} \left[1 + (\kappa - 1)c \right] q (1 - q)^2
\]

\(\sigma_{\text{max}}\) : Maximum cohesive stress

\[\kappa = \frac{\text{cohesive energy with } c = 1}{\text{cohesive energy with } c = 0}\]

\[
T_n = \frac{\sigma(c, q) u_n}{q \delta_n}
\]

\[
T_t = \frac{\delta_n \sigma(c, q) u_n}{\delta_t q \delta_t}
\]

\[
q = \sqrt{\left(\frac{u_n}{\delta_n}\right)^2 + \left(\frac{u_t}{\delta_t}\right)^2}
\]
First Principles Calculations

- **Assessment of interfacial strength of second-phase particles in pipeline steels in hydrogen**
 - Ferrite-based alloys have Cr$_{23}$C$_6$ and MnS precipitates at grain boundary interfaces. Substitutional solutes (e.g. Cr, Mn, Si) or interstitials (e.g. H, N, C) modify structure and stability
 - H (N of C) interstitials alter bonding and cohesion
 - Cr is depleted near Cr$_{23}$C$_6$ interface while Fe preferentially occupies Cr sites not bonded to C
 - Obtain cohesive energies via first-principles, Density Functional Theory (DFT) calculations with distribution of atoms near interfaces based on periodic cell approximations

- **Calibration of phenomenological parameters in the thermodynamic theory of decohesion of Mishin et al. (200)**

- **Validation of ab-initio calculations for decohesion energy calculations**
 - Unrelaxed binding energies (eV) and their differences for H in Fe grain boundary (GB) and free surface (FS) calculated by VASP PAW-GGA and FLAPW (Zhong et al., 2000).

<table>
<thead>
<tr>
<th></th>
<th>GB</th>
<th>FS</th>
<th>GB-FS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unrelaxed binding</td>
<td>VASP PAW-GGA</td>
<td>-3.23</td>
<td>-3.57</td>
</tr>
<tr>
<td>binding energies</td>
<td>FLAPW GGA (Zhong et al., 2000)</td>
<td>-3.09</td>
<td>-3.42</td>
</tr>
</tbody>
</table>
Time Scales

\(t_a \): characteristic time of adsorption

\(t_L \): loading rate

\(t_D \): characteristic diffusion time \(\propto \frac{1}{D_{eff}} \)

Effect of time scales on mechanics of crack initiation and growth
Hydrogen Adsorption

\[\mu = \mu_0(\Theta) + R \Theta \ln(c_L) - \sigma_{kk} V_H / 3 \]

\[\mu_g = \mu_0(\Theta) + R \Theta \ln(c_{Lg}) \]

\[c_{Lg} \propto \sqrt{f} \]

\[\frac{\partial c_L}{\partial t} = \frac{1}{t_a R \Theta} (\mu_g - \mu) \]

\[t_a : \text{characteristic adsorption time} \]

\[\frac{\partial c_L}{\partial t} = \frac{1}{t_a} \left[\ln\left(\frac{c_{Lg}}{c_L}\right) + \sigma_{kk} V_H / 3R \Theta \right] \]

\[\frac{\partial c_L}{\partial t} = k_c P (c_{Lg} - c_L) \]

\[(k_c P) t \quad \text{Non-dimensionalized time} \]

\[\sigma_{kk} = 0 \]

\[\frac{c_L}{c_{Lg}}(t = 0) = 0.1 \]
WOL Specimen for Subcritical Crack Growth
Finite Element Mesh

Applied displacement

\[V_0 \]

\[H = 1.090'' \quad W = 2.240'' \quad B = 2.745'' \]

\[V_m : \text{Crack mouth opening displacement} \]

\[\frac{V_m}{2} \]

\[a \]

Crack tip

\[W \]

\[B \]
Comparing FEM Result with ASTM Equation

\[
\frac{K_I}{(V_m E / W^{1/2})} = f(a/W)
\]

\[
E = 220 \text{ GPa}, \quad \nu = 0.3
\]

ASTM \quad f(a/W)

FEM calculations

\[
f(a/W) = \left[1 - a/W\right]^{1/2} \left[0.654 - 1.88(a/W) + 2.66(a/W)^2 - 1.233(a/W)^3 \right]
\]

\[a/W\]

September 2007
Normalized T-stress for specific V_m – FEM Calculations

$\sigma_0 = 775$ MPa

$V_m = 1$ mm

$\frac{T}{\sigma_0}$

a / W

September 2007
Plasticity in WOL: Issue of K-dominance

\[V_m = 1.204 \text{mm} \quad \alpha/W = 0.9408 \quad \text{ASTM} \quad K_I = 57.5 \text{ MPa}\sqrt{\text{m}} \]

\[\text{FEM} \quad K_I = 63.8 \text{ MPa}\sqrt{\text{m}} \]

\[J = 16008 \text{ N/m} \]

\[K_I = \sqrt{\frac{JE}{1-V^2}} \]

\[K_I = 62.2 \text{ MPa}\sqrt{\text{m}} \]
Stresses in WOL: Issue of K-dominance

Both K- and J-dominance

$$\frac{a}{W} = 0.9408 \quad V_M = 1.204\text{mm}$$

- Elasto-plastic solution
- Small Scale Yielding: $K_I = 64\text{ MPa}\sqrt{\text{m}}$
 $T = 249\text{ MPa}$
- Small Scale Yielding: $K_I = 64\text{ MPa}\sqrt{\text{m}}$, $T = 0$
FEM Results for increased load of SNL Exp-2

\[V_m = 4.9582 \text{mm} \quad a/W = 0.9408 \]

\[\text{ASTM} \quad K_I = 236.9 \text{ MPa}\sqrt{\text{m}} \]

\[\text{FEM} \quad K_I = 261.8 \text{ MPa}\sqrt{\text{m}} \]

Loss of both \(K \)- and \(J \)-dominance

\[J = 124000 \text{ N/m} \]

\[K_I = \sqrt{\frac{JE}{1-v^2}} \]

\[K_I = 170 \text{ MPa}\sqrt{\text{m}} \]

September 2007
Conclusions and Future Work

- **Hydrogen adsorption and transport methodology**
 - Interaction of time scales
 - Possible effects on remediation

- **Mechanisms of fracture (microstructural characterization)**
 - Material system dependence
 - Steel microstructure
 - Weldment
 - Load mode dependence (static vs fatigue)
 - Mode of hydrogen uptake (subcritical crack growth)

- **Coupling mechanisms with transport to understand**
 - Crack initiation
 - Crack propagation
 - Devise fracture criteria with predicting capabilities
 - Possibly a $J_{IC}-T$ locus

- **Fracture mechanics/mechanism-based approach to design**
 - As opposed to the SMYS approach
Hydrogen-Induced Degradation in 4340 Steel

- Studies on the mechanical properties of high-strength steel (AISI 4340) characterize the marked deterioration in fracture strength with increase in hydrogen concentration.

- Mechanical properties are used in the statistical model of hydrogen-assisted fracture

Results for 4-point Bend Single Notched Specimens: Experiment vs Modeling

- double-notch bend testing shows that without H, fracture is strain-controlled, i.e., initiation occurs at the notch (left)

- with H, fracture is inter-granular and stress-controlled; initiation occurs ahead of the notch (right)
Additional slides
Conclusions on WOL

- Abaqus result on K seems to be correct
 - See comparison with the compact tension specimen which we “assume” has a more accurate calibration function
- We do have K dominance even for a crack of a/w=0.94
 - This is not the case for X-52 at such large a/w
- An important outcome is that we have both K and T. In combination with the experiment we can explore criticality conditions based on two parameter characterization
 - Study the hydrogen effect on this two-parameter characterization
Stress – plastic strain curve

\[\sigma_e \text{ [MPa]} \]

\[\varepsilon^p \]
Long Term Objective: Multiscale Fracture Approach

(a) Crack tip fracture process zone
(b) Axisymmetric unit cell model

(c) Traction - separation law

\[\sigma_{\text{max}} \]

\[\Gamma \]

Dissipated energy

\[\sum_{33} \]

\[u_3 \]

\[u_1, \Sigma_{11} \]

\[\sum_{33} \]

\[c_L^{\text{initial}} \text{ at time}=0 \]

Triaxiality
Hydrogen concentration

(e) Cohesive elements characterized by a traction-separation law based on the unit cell model

Adjacent finite element

With hydrogen softening in
(1) cohesive zone and matrix
(2) cohesive zone only

No hydrogen

\[J/(\sigma_0 D_0) \]

\[\Delta a/D_0 \]

September 2007
Future Work

- **Other Activities**
 - Finite element analysis of residual stresses of a Schott Coating sitting on the substrate

![Graph showing residual stresses](attachment://stress_graph.png)

- Average tensile stress σ_{II} in the coating is 125 MPa

- Note that substrate is under large compression (-100MPa) at the edges (possible delamination cause)

- Continue collaboration with ASME on establishing guidelines for codes and standards

- Continue our ongoing collaboration with the Japan program for materials solutions for the Hydrogen Economy
 - Hydrogen National Institute for Use and Storage (Hydrogenius)
 - Kyushu University (Prof. Y. Murakami)

- Continue our ongoing collaboration with the NATURALHY Project sponsored by the European Union
 - Interaction of hydrogen in a pipeline with a corrosion induced-crack on the external wall
Future Work

- **Experiment**
 - Establish the diffusion characteristics of existing and new pipeline steel microstructures
 - Existing pipeline steel samples provided by Air Liquide and Air Products. Specimens are in our laboratory
 - New micro-alloyed steels (new microstructures) provided by Oregon Steel Mills through DGS Metallurgical Solutions, Inc.
 - Collaboration with ORNL and Schott North America for coating of our samples
 - Determine uniaxial tension macroscopic flow characteristics in the presence of hydrogen
 - Carry out fracture testing: Collaboration with Sandia, Livermore
 - SEM and TEM studies on existing and new pipeline material microstructures
 - Fracture surfaces, particle, dislocation, and grain boundary characterization

<table>
<thead>
<tr>
<th>API/Grade</th>
<th>C</th>
<th>Mn</th>
<th>Si</th>
<th>Cu</th>
<th>Ni</th>
<th>V</th>
<th>Nb</th>
<th>Cr</th>
<th>Ti</th>
</tr>
</thead>
<tbody>
<tr>
<td>A X70</td>
<td>0.08</td>
<td>1.53</td>
<td>0.28</td>
<td>0.01</td>
<td>0.00</td>
<td>0.050</td>
<td>0.061</td>
<td>0.01</td>
<td>0.014</td>
</tr>
<tr>
<td>B X70/80</td>
<td>0.05</td>
<td>1.52</td>
<td>0.12</td>
<td>0.23</td>
<td>0.14</td>
<td>0.001</td>
<td>0.092</td>
<td>0.25</td>
<td>0.012</td>
</tr>
<tr>
<td>C X70/80</td>
<td>0.04</td>
<td>1.61</td>
<td>0.14</td>
<td>0.22</td>
<td>0.12</td>
<td>0.000</td>
<td>0.096</td>
<td>0.42</td>
<td>0.015</td>
</tr>
<tr>
<td>D X52/60</td>
<td>0.03</td>
<td>1.14</td>
<td>0.18</td>
<td>0.24</td>
<td>0.14</td>
<td>0.001</td>
<td>0.084</td>
<td>0.16</td>
<td>0.014</td>
</tr>
</tbody>
</table>

Typical natural gas pipeline steel
- Ferrite/acyicular ferrite
- Ferrite/acyicular ferrite
- Ferrite/low level of pearlite

September 2007
Additional slides
Critical Assumptions and Issues

- Hydrogen-induced cracking in existing pipeline steels initiates at second phase particles by hydrogen-induced decohesion followed by shear localization of ligaments
 - Fracture toughness testing and SEM/TEM studies will verify this assumption

- Embrittlement of acicular ferrite initiates at the needle-pearlite/ferrite interface
 - Fracture toughness testing and SEM/TEM studies will verify this assumption

- Hydrogen dramatically degrades the resistance of steel to fatigue crack growth. Possible remediation by water vapor and oxidation
 - Experiments to study the oxidation effects

- Lack of funding does not allow
 - Hire personnel
 - Construct experimental devices
 - Carry out testing

September 2007
Ahead of the crack tip

\[\frac{\sigma_{kk}}{3\sigma_0} \]

- Elastic FEM pipeline geometry \(P = 15 \text{MPa} \)
- Asymptotic Solution \(K_I = 34.12 \text{ MPa}\sqrt{m} \)
- \(T / \sigma_0 = -0.316 \)
- Elastoplastic FEM pipeline geometry \(P = 15 \text{MPa} \)

\(\sigma_0 = 595 \text{ MPa} \)

\[R \quad (\mu \text{m}) \]

\[b \]

- 11% reduction
- 6% reduction

September 2007
EDS reference

EDS of gold sample showing copper peaks from sample holder
Permeation

- Ultrahigh vacuum (10^-9 torr)
- Hydrogen pressure (10 torr)

- Hydrogen is introduced on one side of the sample
- Permeates through sample
- Detected by ion pump

- 4.75 cm disks
- 100 micron thickness
- Palladium coating on exit side
- Testing coatings on hydrogen side

Real-world pipeline specimens are in our possession for testing. Air Liquide and Air Products provided the coupons.
Transient to Steady State - Lattice Concentration

C_L / C_0
Full Field (pipeline) vs Boundary Layer Solution (laboratory specimen)

\[
\frac{C_L}{C_0} = \frac{\sigma_{kk}}{3\sigma_0}
\]

- Crack length of 1.9 mm \(a/h = 0.2 \), \(b = 6.61 \, \mu m \)
- Crack length of 0.476 mm \(a/h = 0.05 \), \(b = 1.06 \, \mu m \)

\[
\begin{align*}
a/h &= 0.2 \\
K_I &= 34.12 \, MPa\sqrt{m} \\
T/\sigma_0 &= -0.316
\end{align*}
\]

\[
\begin{align*}
a/h &= 0.05 \\
K_I &= 14.38 \, MPa\sqrt{m} \\
T/\sigma_0 &= -0.292
\end{align*}
\]

September 2007
Fracture Assessment

From the full pipeline to laboratory specimens

Crack depth/pipeline thickness
Hydrogen effect on ductile crack growth

- crack growth mechanisms
 - Void by void growth
 - Multiple void growth

\[f_0 = \pi \left(\frac{R_0}{X_0} \right)^2 \]

- Effect of hydrogen softening and dilatation
- Identifying the range of \(f_0 \) that each mechanisms is operative

[Tvergaard and Hutchinson, 2002
Petti and Dodds, 2005]
Ab-initio

- We have completed several necessary validation “computer experiments” on the binding energies for H in Fe grain boundary and free surface using a pseudopotential based plane-wave method via projected-augmented wave basis functions, as implemented in the Vienna \textit{ab initio} Simulation Package. A subset of our validation results provides unrelaxed binding energies for H in Fe for GB/FS equal to -3.23/-3.57 eV, and the binding energies difference of the GB and FS equal to +0.34 eV, in good agreement with values in literature [4].
Ahead of the crack tip at steady state

Kumnick and Johnson (1980) trapping model

\[C_0 = 2.65932 \times 10^{22} \text{ H atom} / \text{m}^3 \]

- \(\varepsilon^p \)
- \(\sigma_{kk} / 3\sigma_0 \)
- \(C_L / C_0 \)
- \(C_T / C_0 \)
- \((C_L + C_T) / C_0 \)

\(L = 0.3'' \) uncracked ligament

\[L: \text{uncracked ligament} \quad x / L \]
Compact Tension Specimen: FEM Result vs Handbook

\[
\frac{K_I}{(P/\sqrt{W})} = f \left(\frac{a}{W} \right) = \frac{2 + \frac{a}{W}}{\left(1 - \frac{a}{W} \right)^{3/2}} \left[0.886 + 4.64 \left(\frac{a}{W} \right) - 13.32 \left(\frac{a}{W} \right)^2 + 14.72 \left(\frac{a}{W} \right)^3 - 5.6 \left(\frac{a}{W} \right)^4 \right]
\]

\(f \left(\frac{a}{W} \right) \)

Tada, et al.

FEM calculations

\(E = 220 \text{ GPa} \), \(\nu = 0.3 \)