







# Overview: STEEL Lightweighting Projects

Joseph Polewarczyk General Motors Corporation











- Future Generation Passenger Compartment (FGPC)
  - Mass optimization of passenger compartment of mid-sized sedan structure designed to meet safety performance requirements

Mass Efficient Architecture for Roof Strength (MEARS)

 Mass optimization of roof structure of worst case vehicle (pickup body w/o B-pillar) designed to meet new roof strength requirements

Mass Compounding

- Regression analysis to quantify potential vehicle mass reduction made available by reduced mass components
- Lightweight Front End Structure (LWFES)
  - Optimization of front end structure of mid-sized sedan structure designed to meet current safety performance requirements
- Rear Chassis Structure
  - Mass optimization of rear chassis cradle









#### **TECHNICAL BARRIERS**

- Results indicate that higher strength, thinner gauge materials could be applied to body-in-white structures to further reduce mass
- These materials have the following challenges
  - Higher strength steels are currently unavailable in the thinner gauges called for
  - Formability of some of these materials is more challenging than lower grade materials, or material costs increases are significant
  - Class A (show surface) capability of these materials is poor
  - These materials present joining challenges compared to current materials
- A/S P Light-Weighting projects feed these requirements to "enabler teams" to obtain solutions to these challenges. E.g.:
  - The Joining Team is addressing welding and/or bonding the proposed combinations of materials from FGPC Phase I
  - The hydroform tube team is working to implement a hydroformed version of the LWFES front rails



#### **PROJECT TIMELINE**









#### FGPC

- Phase I Complete
- Phase II Validation completion date: March 2009

#### **MEARS**

- Phase I Complete
- Phase II completion date: September 2008

#### Mass Compounding

Project complete

#### LWFES

- Project Complete
- Rear Chassis Structure
  - Completion date: December 2008













#### **Design Process**



Project approach applies to:

- FGPC
- LWFES
- MEARS

Variations on this process are typically driven by software choice of CAE / Design firm and the number of design iterations evaluated. Overall process is same











#### MASS COMPOUNDING

- Acquire competitive benchmarking teardown data from Chrysler, Ford & General Motors.
- Adjust data categories to obtain equivalent content between subsystems (Auto companies do not categorize sub-systems exactly the same).
- Use regression techniques to identify mass reduction potential of vehicle sub-systems as related to one another.
- Create simple tool to predict mass reduction potential from mass reductions of one or more subsystems.



#### **PROJECT STATUS**









## FGPC Phase I (Complete)

- Benchmarking and Baseline Calibration tasks complete, reports issued and posted on A/SP member website.
- Load path optimization analysis to establish best geometry to resist crash load cases and maintain global stiffness complete.
- Impact studies for vehicle mass and barrier height complete.

## • FGPC Phase II (Validation):

- Initial Optimization complete, topology results from phase I confirmed (CAE Study).
- Refining design solutions for new load paths to prepare for final optimization (Optimization / DOE study).











## Fuel Cell Packaging















Optimized Results Analysis

FGPC optimized Weight: 12.97 kg



1.25 DP780

**Proposed Optimized** 

**Taylor welded Construction** 

ULSAB AVC weight: 20.89 kg FGPC Optimized Weight: 12.97 kg FGPC design weight: 17.37 kg

**Considered for Construction decision:** 

- -Class A capability
- -Cost of Taylor welded blank
- -Treatment



















Side Pole Impact Met FGPC Targets

Roof Crush
Met FGPC Targets

IIHS Front Crash Met FGPC Targets

- IIHS Side Impact Met FGPC Targets

Side Door Intrusion Met FGPC Targets

Rear Crash
Met FGPC Targets

Bending/Torsion Met FGPC Targets

Model Analysis Met FGPC Targets

Durability
Met FGPC Targets



























## **Total Mass Savings:**

108.2 kg

|               | Industry<br>Standard | FGPC - Final | Mass Savings | % Savings |
|---------------|----------------------|--------------|--------------|-----------|
| BIW + IP Beam | 310.0                | 217.6        | 92.4         | 30%       |

|                        | Baseline-FGPC | FGPC-Final | Mass Savings | % Savings |
|------------------------|---------------|------------|--------------|-----------|
| Mod. Parts, Door Beams | 143.2         | 127.4      | 15.8         | 12%       |











#### INITIAL OPTIMIZATION IIHS SIDE IMPACT

















## FGPC - PHASE II IIHS SIDE IMPACT

LS-DYNA user input

STEP 1 TIME: 0.000000





ETA/POST









#### FGPC - TECHNOLOGY TRANSFER

- Reports and presentations placed on www.a-sp.org.
- Roadshow of results to be presented to member companies.
- Results presented at 2007 Great Designs in Steel seminar.
- Phase II will follow a similar tech transfer process when complete.









#### **MEARS - PROJECT GOALS**

- Develop designs for the B-Pillarless body architecture that is capable of achieving the loads specified in the NPRM for FMVSS 216.
  - Structure must support a load of 2.5 times the maximum unloaded vehicle weight.
  - Maximum load requirement must be achieved before there is contact between a 50th Percentile Hybrid III Dummy and any component of the vehicle.
- Minimize the weight impact to the vehicle with the use of AHSS materials and structural design concepts.
- Best solution selected based on weight efficiency, cost effectiveness, and ease of manufacturing.









#### **MEARS - FINAL DESIGN**

- Weighted Rating developed for solutions from each concept
- Based on weight impact, variable cost, manufacturing impact, and repairability
- Nylon Inserts and Steel Inserts came out equal Nylon Inserts selected due to lower weight increase over baseline model

|      | Concept                                | Load<br>Factor | Mass<br>[kgs] | Cost  | Rating |      |                    |        | Weighted |
|------|----------------------------------------|----------------|---------------|-------|--------|------|--------------------|--------|----------|
| S.No |                                        |                |               |       | Mass   | Cost | Manufac turability | Repair | _        |
|      | Weight Factor>                         |                |               |       | 4      | 3    | 2                  | 1      |          |
| 1    | Stamping Intensive                     | 3.06           | 17.6          | \$108 | 1      | 1    | 4                  | 3      | 18       |
| 2    | Hydroform intensive                    | 3.00           | 10.5          | \$79  | 4      | 3    | 3                  | 3      | 34       |
| 3 A1 | Steel Inserts-Tube in C-Pillar         | 3.00           | 14.9          | \$79  | 2      | 3    | 3                  | 4      | 27       |
| 3 A2 | Steel Inserts-<br>Stamped C-Pillar Rnf | 3.06           | 13.8          | \$67  | 3      | 5    | 4                  | 4      | 39       |
| 3. B | Nylon Inserts (Drop-in)                | 3.06           | 7.5           | \$80  | 5      | 3    | 4                  | 2      | 39       |
| 3. C | BetaFoam (Injected)                    | 2.95-3.82*     | 8.4           | \$78  | 5      | 3    | 2                  | 2      | 35       |











#### **MEARS - FINAL DESIGN**



#### **Insert Optimization**

**Size Reduction** 

C3\_I211\_Baseline

C3\_I221

#### Nylon Insert at C-Pillar Top trimmed

## **Insert Optimization Design Modification**



| Design                                                                                                  | Load Factor | Mass increase (kg) |
|---------------------------------------------------------------------------------------------------------|-------------|--------------------|
| C3_I211 [Baseline , All Faces = 2.5 mm, 33% Glass<br>Filled Nylon In All Locations]                     | 3.06        | 7.54               |
| C3_I225 [All Faces = 2 mm, 33% Glass Filled Nylon In<br>C Pillar , In Other Locations 13% Glass Filled] | 3.00        | 6.62               |
| C3_I226 [All Faces = 2 mm, Removed Alternate Ribs At<br>All Locations]                                  | 2.96        | 6.08               |
| C3_1228 [All Faces = 2 mm, 33% Glass Filled Nylon In<br>All Locations]                                  | 3.06        | 7.02               |
| C3_I236 [All Faces = 2.5 mm, 13% Glass Filled Nylon<br>In All Locations]                                | 2.96        | 6.76               |











#### **MEARS - FINAL DESIGN**

## Optimized Design – Force Deflection Curve















- Validation of the performance of the composite reinforcements used in the hybrid solutions through the use of component level bench testing.
- Finalized hybrid design concept.
- Cost analysis of the hybrid concept.
- Verification of impact of design modification of hybrid design on other safety test modes (side impact, frontal impact).
- Submission of Phase 2 Final report.









#### LWFES - PROJECT RESULTS

- Demonstrated a 31.8% mass savings for full vehicle mass
- Study then reduced vehicle mass by 20% and retuned rail/bumper system for lighter vehicle.



• 20% curb weight reduction resulted in bumper/rail system decreasing from 26.8 kg to 23.6 kg (12% reduction) or 39.8% less than baseline at cost parity.











#### REAR CHASSIS - PROJECT APPROACH

#### Phase I

- Select baseline chassis structure
- Prepare an AHSS design
- Build prototypes
- Use prototypes to address technology gaps
- Conduct NVH, fatigue and corrosion resistance tests on prototypes

#### Phase II

- Prepare clean sheet design
- Prototypes not required because technology gaps adequately addressed using Phase 1 prototypes
- Fabricate parts/specimens if necessary to resolve formability/technical issues
- Perform fatigue simulation of Phase 2 design
- Evaluate mass compounding











#### REAR CHASSIS – PROJECT GOALS

#### Phase 1:

Conduct 10% mass reduction through "material substitution"

#### Phase 2:

 Minimum 25% mass reduction through "design/process optimization" with no more than a 9% cost premium.

#### Phase 3:

Technology Transfer











#### REAR CHASSIS - PHASE 1 RESULTS

- Achieved a 26.2% mass reduction (loss of stiffness not a consideration in this phase)
- Chassis parts were formed with available DP590 and TRIP780 steels
- Developed Design Rules for GMAW welded AHSS
- Evaluated the Verity and BS 5400 methods for running fatigue simulations of chassis structures
- Corrosion resistance of thin AHSS chassis parts being addressed









#### REAR CHASSIS - PHASE 2 RESULTS

- Preliminary design prepared
- Initial mass reduction of 12% with no reduction in stiffness
- Shape and size optimization and new technologies being applied to increase mass reduction











#### REAR CHASSIS - NEXT STEPS

| Activity               | Completion Date |
|------------------------|-----------------|
| Phase 1 Final Report   | July, 2008      |
| Phase 2 Final Design   | April, 2008     |
| Cost Analysis          | April 2008      |
| Mass Compounding       | May, 2008       |
| Parts/Specimens        | July, 2008      |
| Phase 2 Final Report   | December, 2008  |
| Phase 3 Communications | June, 2009      |









## BASELINE CHASSIS STRUCTURE



• Rear Chassis Structure









## PHASE I - FATIGUE AND MODAL TESTS













#### PHASE 2 - PRELIMINARY DESIGN

- Hybrid design
- Best opportunity to achieve goals













#### MASS COMPOUNDING - OVERVIEW

- Lightweighting projects have demonstrated mass savings of over 30% without consideration for mass compounding.
- Mass Compounding.
  - unplanned mass increases in a component during a vehicle design has a ripple effect through out the vehicle, other components need to be resized Increasing mass event more. Mass begets mass describes this phenomenon.
  - A more encouraging view of this behavior is the reduction of a component's mass resulting in greater mass savings for the entire vehicle.











## MASS COMPOUNDING - RESULTS

- Preliminary Optimization Study Results:
  - 30% mass reduction at no cost for full size vehicle.
  - 40% mass reduction for full vehicle 25% reduced mass vehicle.
  - At no additional cost.













#### MASS COMPOUNDING - MODEL













#### LIGHTWEIGHTING SUMMARY

- Mass reduction projects achieved between 10% and 30% mass reduction using a combination of optimization techniques and the application of Advance High-Strength Steel.
- Roof strength project achieved a 63% improvement in load capacity with a minimal mass increase using a combination of optimization techniques and the application of Advance High-Strength Steel with plastic inserts.
- Further mass reduction can be achieved by applying mass compounding estimates to drive initial design criteria.

