Overview: STEEL
Enabling Technologies

Dr. Roger Heimbuch
Auto/Steel Partnership
OUTLINE OF PRESENTATION

- Sheet Steel Fatigue
- High-Strength Steel Stamping
- Hydroform Materials and Lubricants
- Advanced High-Strength Steel Joining
- Tribology
Sheet Steel Fatigue

Project Manager: Bart Clark
Auto/Steel Partnership

Chair: Raj Mohan
Severstal North America, Inc.

This presentation does not contain any proprietary or confidential information
SHEET STEEL FATIGUE

PROJECT GOALS

• Support vehicle lightweighting initiatives.

• Determine the fatigue characteristics of:
 – Sheet steels
 – Spot welds
 – Metal Inert Gas (MIG) welds
 – Lasers welds

• Evaluate and validate predictive methodologies for durability assessment.
• Fabricate welded coupons from multiple grades and gages of AHSS.
• Conduct thorough fatigue testing on AHSS welded joints to determine:
 – Mechanical properties of welds
 – Fatigue responses from welds
 – Effects of geometric variation of welds on weld durability
• Investigate durability issues:
 – Dissimilar metals spot welding
 – Structural adhesives
 – Multiple spot-weld architecture
Resistance Spot Weld (RSW) Testing
- Designed and fabricated RSW fatigue test specimens from mild steel and ultra high strength boron steel.
- Completed testing of spot welds. Placed online the knowledge base developed from the results.
- Completed a detailed study of the effect of geometric parameters on fatigue life of spot welded specimens.
MIG / Laser Weld Testing

- Completed fatigue testing of MIG welded specimens created by the Joining Technologies Team (ASP-070)
- Developed a specification for fabricating MIG and Laser welded specimens
- Completed weld fatigue testing of single-lap shear, double lap shear and perch-mount MIG weld specimens
• Spot weld data available on member website

• A/SP report on spot weld project

• SAE paper & presentation

• Testing and analysis on weld fatigue completed on Joining Technology Team weld fatigue specimens

• IABC paper written on spot and GMAW welded specimens

• GDIS 2007 presentation on spot weld work.
• Investigation of:
 – Laser seam welds.
 – Effects of large amounts of cold work (stretch) on base metal fatigue.
 – Spot-welded (multi-weld) structural testing.
High-Strength Steel Stamping

Project Manager: Michael S. Bzdok
Auto/Steel Partnership

Co-chair: James Fekete
General Motors Corporation

Co-chair: Changqing Du
Chrysler LLC

This presentation does not contain any proprietary or confidential information
HIGH-STRENGTH STEEL STAMPING
PROJECT GOALS

• Evaluate springback prediction capability.

• Validate die processes and part features for best part quality in AHSS:
 - Minimum springback/curl/twist.
 - Minimum wrinkling.
 - Improved Dimensional accuracy.

• Assess impact of AHSS on press force/energy requirements.

• Develop product/process design guidelines for AHSS.

• Characterize fracture behaviors of AHSS during stamping to guide stamping processes and steel development.
HIGH-STRENGTH STEEL STAMPING
PROJECT DELIVERABLES

Experiments and Springback Measurements

Formed Dual-Phase Rail Panel

Panel after draw process

Panel after trimming process

Datum points

Conclusion:

- Springback increased with the material strength.
- Draw form process produced more springback than the crash form process.
- Overall, reasonably good prediction accuracy was obtained, especially for DP600 parts.

Validation of springback predictability

- LS-Dyna simulation

Effect Ranking of Springback Factors

Correlation Sim. Vs. Exp.

Material

Flange Opening Angle - Total (Dimensionless)

Validation of springback predictability

- LS-Dyna simulation

Conclusion:

- Springback increased with the material strength.
- Draw form process produced more springback than the crash form process.
- Overall, reasonably good prediction accuracy was obtained, especially for DP600 parts.
Several features added to enable stamping in DP780.

- Changes to product shape to take up excess metal.
- Features added to stiffen part.

Split/fracture free stampings made from both DP780 and DP980.

Phase II: Dimensional evaluation and evaluate computer guided compensation to re-cut die.
HIGH-STRENGTH STEEL STAMPING

PROJECT DELIVERABLES

• EWI/OSU project – ongoing three year project.
 – Characterization, Draw Bend Formability (DBF) testing and fracture criteria development.
• Modified “15-flange Die” for use in evaluating stretch-flanging capability of DP materials.
 – Demonstrated equations provided by B. Levy March 2007 report to be a good starting point for modeling.
• Next steps include:
 – Improved evaluation of microstructure effects.
 – Include effect of shear-affected zone caused during trimming.
 – Optimize process for best edge-stretchability and maximum tool life.

DP980 – 1mm flange

DP980 – 5mm flange
Advanced High-Strength Steel
Product and Process
Application Guidelines

A Special Edition of In-Depth AHSS Case Studies
Including Excerpts from the IISI AHSS Application Guidelines

Auto/Steel Partnership
Southfield, Michigan
November 1, 2007
HIGH-STRENGTH STEEL STAMPING
PROJECT IMPACT

• Successful “proof of concept” for cutting edge applications.
 – DP980 for B-pillar inner panels (not just reinforcements).
 – DP780 & DP980 for complicated rear longitudinal rails.

• New production applications contain key product features identified in this project.
 – Equinox B-pillar reinforcement.

• Documented improvements in correlation of math models of springback with experimental results.
HIGH-STRENGTH STEEL STAMPING
TECHNOLOGY TRANSFER

Support of AHSS Applications Guidelines Project:
AHSS Case Studies at http://www.a-sp.org/publications.htm

Technical Papers:
Chrysler rear rail springback correlation study for NUMIFORM.
- Numiform 2007 Conference, Aveiro, Portugal.
- MS&T’07 Conference at COBO Center, Detroit, Michigan
- Forming tonnage study for 2007 SAE Congress in Detroit, Michigan.
Hydroform Materials and Lubricant

Project Manager: Bart Clark
Auto/Steel Partnership

Chair: Ron Soldaat
ArcelorMittal

This presentation does not contain any proprietary or confidential information
HYDROFORMING MATERIALS AND LUBRICANTS

PROJECT GOALS

- Explore design, manufacturing and material implications/limitations of tubular hydroforming using advanced high-Strength steel (AHSS).
- Develop in-depth understanding of critical issues pertaining to fabrication of tubes from AHSS.
- Improve advanced CAE tools to streamline hydroforming process design.
- Facilitate the adoption of cutting-edge hydroforming applications in vehicle structures.
• Fabricate Tailor Welded Tubes (TWTs) from various grades and gauges of AHSS.
• Using instrumented test facilities, conduct expansion tests of the AHSS TWTs to determine forming limits of roll-formed and seam-welded tubes.
• Shape and hydroform the AHSS TWTs to develop manufacturing guidelines.
Experimental Forming Limits of Steel Tubes

Testing procedures to obtain representative mechanical properties of tubes.

• *Delivered*

Forming Limit Diagram for tube hydroforming.

• *Delivered*
Influence of Bending Parameters on the Hydroforming of IF and DP600 Tubes

A study on the influence of lubricants and the tube bending process on subsequent hydroforming operations.

- **Experimental work complete.**

Forming characteristics of tailor welded tubes.

- **Experimental work complete.**
HYDROFORMING MATERIALS AND LUBRICANTS
TECHNOLOGY TRANSFER

- Engineering reports and presentations placed on A/SP website.
 - Experimental Forming Limits of Steel Tubes
 - Influence of Bending on Hydroforming of IF and DP-600 Tubes
 - FEA Report on Lightweight Front Rail Formability Study
- Ongoing experimental results placed on member’s-only area of A/SP website.
- SAE 2009 World Congress technical paper.
- Media relations and public opportunities.
HYDROFORMING MATERIALS AND LUBRICANTS

ACTIVITIES FOR NEXT FISCAL YEAR

• Continue fabrication of AHSS Hydroform TWT Lightweight Front Rails (LWFES concept).
 • Bending trials in process-having difficulties.
 • Hydroform tools built.
• Stress and Strain Measurements under Non-Linear Loading through Tube Fracture for Improved Modeling and Prediction.
 • Project definition and RFQ in process.
• Investigation of Fabricating DP and TRIP Steel Tube from an ERW Production Line.
 • Project initiated with CANMET
Advanced High-Strength Steel Joining

Project Manager: Mike Bzdok
Auto/Steel Partnership

Co-chair: John C. Bohr
General Motors Corporation

Co-chair: Eric Pakalnins
Chrysler LLC

This presentation does not contain any proprietary or confidential information
• Provide welding and joining expertise to support A/SP project teams in developing lightweight automotive body structures.

• Supplement existing welding and joining technical knowledge with applied research to facilitate an increased use of AHSS.

• Utilize A/SP research data to prepare industry weldability and weld quality acceptance standards.
ADVANCED HIGH-STRENGTH STEEL JOINING

PROJECT DELIVERABLES

- Provide welding process parameters and weld strength data to facilitate increased use of Advanced High Strength Steel (AHSS) in automotive structures.
- Publish common industry standards for weld quality acceptance.
- Publish common industry test methods for evaluating the weldability of automotive sheet steel materials.
- Assess manufacturing feasibility of joining AHSS with single sided processes, projection welding and drawn arc stud welding.
Completed Investigation of Resistance Welding Performance of Advanced High-Strength Steels Design of Experiment.

RESULTS & CONCLUSIONS

Part 1 - Peak Load

In general, high loading rate (A) results in high peak load, which could be related to the strain-rate effect of the tested materials. Exceptions are Materials 09 and 10. Material 09 is not sensitive to loading rate, and Material 10 has a negative loading rate effect which indicates that a high loading rate produces a lower peak load. Among the materials tested, Materials 07 and 11 are most (positively) sensitive to the loading rate.

Increasing weld button size (B) dramatically increases the peak load for most of the materials. The responses of Materials 07, 09, and 11 are not as strong as other materials.

Hold time (C) has in general positive effects on peak load. The effects are not as significant as for the loading rate and button diameter, and Materials 05, 06, and 09 are not sensitive to the hold time.

The interactions of factors are generally weak or negligible.

TENSILE SHEAR TEST RUN SHEET # 1 OF 4

<table>
<thead>
<tr>
<th>Coupon</th>
<th>Coupon Type</th>
<th>Factor Settings</th>
<th>Weld Schedule</th>
<th>Weld Responses</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For each material, the peak load and energy are analyzed as functions of loading rate, button diameter, and hold time.
Completed Study of Single Sided Weld Processes for Joining Advanced High-Strength Steel.
ADVANCED HIGH-STRENGTH STEEL JOINING

PROJECT DELIVERABLES

Investigated the use of process finite element modeling to predict weld quality characteristics and optimize weld process parameters for resistance spot welding of AHSS.
Weld Lobe Development and Assessment of Weldability of Common Automotive Fasteners (Studs and Nuts) to AHSS Using the Drawn Arc Welding Process

AUTO STEEL PARTNERSHIP - DRAWN-ARC WELDING STUDY 2006

| WELD CURRENT (I) in Amps | 1500 | 1450 | 1400 | 1350 | 1300 | 1250 | 1200 | 1150 | 1100 | 1050 | 1000 | 950 | 900 | 850 | 800 | 750 | 700 | 650 | 600 | 550 | 500 |
|--------------------------|------|------|------|------|------|------|------|------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 |

FASTENER DESCRIPTION: M6 Stud/Nut
FASTENER PLATING: Zinc-Nickel
EMHART FASTENER PART#: 39050
BASE MATERIAL TYPE: DP988
BASE MATERIAL PLATING: Galvanneal
BASE MATERIAL THICKNESS: 1.0 mm

EQUIPMENT
- DCE 1500 WELD CONTROL
- ETF 12 FEEDER
- LM WELD HEAD

WELD PROGRAMMING
PARAMETERS
- LIFT 1.20mm
- PENETRATION -1.6 mm
- START DELAY 250ms
- Yarc PILOT LIMIT 15.0V to 33.0V
- Yarc WELD LIMIT 15.0V to 33.0V
- WELD TIME +/- 6ms
- WELD CURRENT +/- 30Amps
- STUD NEGATIVE POLARITY

w w w . a – s p . o r g
2008 DOE Merit Review
Standard for Resistance Spot Weld Acceptance Criteria.
• Joint Efficiency Project
 – Welds/joints/bonds on lap-shear coupons to generate tensile test (load-displacement) curves.
 – Five grades of steel to quantify joint efficiencies of forty joining and bonding methods.

• LME and Hot Cracking Susceptibility
 – Sigmajig testing of AHSS

• Procedure for RSW Characterization
 – AWS D8.9 Procedure for AHSS

• GMAW Weld Design Guideline
• Technical presentations and reports are presented to the Joining Technology Team and placed on www.a-sp.org, for team member access and distribution.

• Selected projects presented at AWS Sheet Metal Welding Conference, International Auto Body Congress and the Material Sciences & Technology Conference.
• Presentations and exhibit at GDIS.
• The A/SP prepared industry standards are published by AWS/ANSI.
• Final reports are available on the public side of the A/SP website
Tribology

Project Manager: Pat Villano
Auto/Steel Partnership

Chair: David Meuleman
General Motors Corporation

This presentation does not contain any proprietary or confidential information
TRIBOLOGY

PROJECT GOALS

• Investigate the influence of lubricants, die treatments, and designs on reducing the wear when using Advanced High Strength Steels (AHSS)

• Assess variables such as coefficient of friction, sheet metal grade and thickness, die material grade and coating, Temperature, and restraining forces on die wear.

• Use draw bead penetrations and parameters in the Continuous Wear Test (CWT) to model production practices.

• Testing materials using design of experiments methods will define trends and increase accuracy of model.
• Complete wear studies involving:
 1. Steel strength levels and coatings.
 2. Die (draw bead) material and coating.
 3. Lubricants.
 4. Die geometry.
 5. Sheet thickness.

• Conduct studies of tool steels used for trim dies.

• Complete One-factor at a time (OFAT) testing examining DP780 & DP980 steel at 100,000 hits.
• Decoiler
• Coil
• Main Ram
• Pull Cylinder
• Clamp/Cut Ram
• Thermocouples (3)
• Bead inserts
• Load cell
TRIBOLOGY

L16 DESIGN OF EXPERIMENTS

<table>
<thead>
<tr>
<th>Test #</th>
<th>Seq #</th>
<th>Sheet Coating</th>
<th>Base Steel</th>
<th>Bead Radius (mm)</th>
<th>Lube</th>
<th>Bead Coating</th>
<th>Thickness (mm)</th>
<th>Actual Thickness (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>GA</td>
<td>DP600</td>
<td>5</td>
<td>DF</td>
<td>D2</td>
<td>1.2</td>
<td>1.19</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>GA</td>
<td>DP600</td>
<td>5</td>
<td>DF</td>
<td>CrN</td>
<td>1.6</td>
<td>1.60</td>
</tr>
<tr>
<td>3</td>
<td>16</td>
<td>GA</td>
<td>DP600</td>
<td>7</td>
<td>MO</td>
<td>D2</td>
<td>1.2</td>
<td>1.18</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>GA</td>
<td>DP600</td>
<td>7</td>
<td>MO</td>
<td>CrN</td>
<td>1.6</td>
<td>1.60</td>
</tr>
<tr>
<td>5</td>
<td>11</td>
<td>GA</td>
<td>HSLA</td>
<td>5</td>
<td>MO</td>
<td>D2</td>
<td>1.6</td>
<td>1.66</td>
</tr>
<tr>
<td>6</td>
<td>14</td>
<td>GA</td>
<td>HSLA</td>
<td>5</td>
<td>MO</td>
<td>CrN</td>
<td>1.2</td>
<td>1.21</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>GA</td>
<td>HSLA</td>
<td>7</td>
<td>DF</td>
<td>D2</td>
<td>1.6</td>
<td>1.67</td>
</tr>
<tr>
<td>8</td>
<td>13</td>
<td>GA</td>
<td>HSLA</td>
<td>7</td>
<td>DF</td>
<td>CrN</td>
<td>1.2</td>
<td>1.21</td>
</tr>
<tr>
<td>9</td>
<td>12</td>
<td>GI</td>
<td>DP600</td>
<td>5</td>
<td>MO</td>
<td>D2</td>
<td>1.6</td>
<td>1.57</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>GI</td>
<td>DP600</td>
<td>5</td>
<td>MO</td>
<td>CrN</td>
<td>1.2</td>
<td>1.16</td>
</tr>
<tr>
<td>11</td>
<td>9</td>
<td>GI</td>
<td>DP600</td>
<td>7</td>
<td>DF</td>
<td>D2</td>
<td>1.6</td>
<td>1.59</td>
</tr>
<tr>
<td>12</td>
<td>15</td>
<td>GI</td>
<td>DP600</td>
<td>7</td>
<td>DF</td>
<td>CrN</td>
<td>1.2</td>
<td>1.18</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>GI</td>
<td>HSLA</td>
<td>5</td>
<td>DF</td>
<td>D2</td>
<td>1.2</td>
<td>1.20</td>
</tr>
<tr>
<td>14</td>
<td>10</td>
<td>GI</td>
<td>HSLA</td>
<td>5</td>
<td>DF</td>
<td>CrN</td>
<td>1.6</td>
<td>1.63</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>GI</td>
<td>HSLA</td>
<td>7</td>
<td>MO</td>
<td>D2</td>
<td>1.2</td>
<td>1.21</td>
</tr>
<tr>
<td>16</td>
<td>5</td>
<td>GI</td>
<td>HSLA</td>
<td>7</td>
<td>MO</td>
<td>CrN</td>
<td>1.6</td>
<td>1.59</td>
</tr>
</tbody>
</table>
OFAT Test Specifications

<table>
<thead>
<tr>
<th>Variable</th>
<th>Expected Low Abrasive Wear</th>
<th>Expected High Abrasive Wear</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sheet Coating</td>
<td>Hot-Dipped Galvanized (GI)</td>
<td>Galvanneal (GA)</td>
</tr>
<tr>
<td>Base Steel</td>
<td>HSLA</td>
<td>DP600</td>
</tr>
<tr>
<td>Bead Radius</td>
<td>7mm</td>
<td>5mm</td>
</tr>
<tr>
<td>Lubricant</td>
<td>Dry Film (DF)</td>
<td>Mill Oil (MO)</td>
</tr>
<tr>
<td>Bead Coating</td>
<td>CrN on D2</td>
<td>Uncoated D2</td>
</tr>
<tr>
<td>Thickness</td>
<td>1.2 mm</td>
<td>1.6 mm</td>
</tr>
</tbody>
</table>
• Four technical papers scheduled for publication.

• Update A/SP “Procedures for Testing Characteristics of Automotive Sheet Steel Lubricants.”

• Report out the results of OFAT including extended testing (100,000 strokes) of best performing die material/die coating combination.
TRIBOLOGY

ACTIVITIES FOR NEXT FISCAL YEAR

• Evaluation of five trim steel/coating combination using DP980 steel.

• Descriptive wear model based on all tribology testing, including galvaneal and hot dip galvanized effect.

• Develop/publish a predictive wear model.

• Continue partnership with NIST on AHSS Tribology issues.