Overview and Progress of the Exploratory Technology Research Activity: Batteries for Advanced Transportation Technologies (BATT)

Tien Q. Duong
Energy Storage R&D
Hybrid & Electric Systems Team

Tuesday, May 10, 2011

Project ID: ES108
Overview

Perform cutting-edge research on new materials, and address fundamental chemical and mechanical instabilities.

Timeline

- Start – October 2008
- Finish – September 2014
- 33% Complete

Budget

- $15.1 million in FY 2010
- $22.3 million in FY 2011

Challenges

- Research and develop next generation anode and cathode materials
- Understand failure mechanisms to enable higher energy, longer lasting, less expensive batteries
- Comprehensive modeling of cell and material behavior

This presentation does not contain any proprietary, confidential, or otherwise restricted information.
Participants

This presentation does not contain any proprietary, confidential, or otherwise restricted information.
Material Synthesis, Diagnostics, and Modeling Across Length Scales

Length Scales

10 nm-10 µm

100µm-300µm

Structural Diagnostics

Electrochemical Diagnostics

Electrode Diagnostics

Electrochemical Analysis

Material Synthesis/Modifications

New/Improved Material

Lab Cell Fabrication/Evaluation

Improved Chemistry

Structural Modeling

Electrode Modeling

This presentation does not contain any proprietary, confidential, or otherwise restricted information.
The BATT Portfolio in 2011

High-Voltage Cathode
• Ni/Mn Spinel

Novel electrodes, electrolytes, and separators

Beyond Li-ion
• Li-metal anode
• Li-S
• Li-air

High Capacity Anode
• Silicon

Novel electrode processing

Beyond Lithium
• Sodium?
• Magnesium?

Specific System And Material Research

Novel additives

New Materials/Processing Research

Beyond Li-ion Chemistry Research

3-5 years

5-7 years

7-10 years
2010 Anode Highlights

- Cui’s group at Stanford demonstrated that size & morphology control can improve performance: hollow Si nanotubes show greatly enhanced cycling.

- Dillon’s group at NREL applied “atomic layer deposition” coatings to MoO$_3$ nanoparticle-based anodes. ALD-coated particles do not cycle nearly as well as ALD-coated electrodes.

This presentation does not contain any proprietary, confidential, or otherwise restricted information.
2010 Cathode Highlights

- Cabana’s group at LBNL compared the cycling ability of high-voltage LiNi_{1/2}Mn_{3/2}O_{4} with different sizes and morphologies. Nanostructures (blue and red) may not improve performance.

- Manthiram’s group at University of Texas produced an Fe-doped, high-voltage material that cycles well at 4.8 V and 137 mAh/g.

This presentation does not contain any proprietary, confidential, or otherwise restricted information.
2010 Diagnostics Highlights

- Zaghib’s group at Hydro-Quebec developed an *in situ* SEM tool to directly observe the expansion/contraction of silicon oxide anodes. Cracks formed during expansion remain after contraction.

- Grey’s group at Stony Brook Univ. developed an *in situ* NMR technique to differentiate between bulk and dendritic Li, monitor the growth of \(\mu \text{m-sized} \) dendritic/mossy Li, and determine what Li participates in the electrochemistry.

This presentation does not contain any proprietary, confidential, or otherwise restricted information.
All Projects are Competitively Selected

- Request for Proposals Schedule:
 - 2008 – New electrolytes
 - 2009 – New anodes
 - 2010 – New cathodes

 - Nov. 2011 – Advanced Diagnostics, Modeling and Assembly of Battery Materials and Electrodes
 - Nov. 2012 – Novel Electrolytes and Additives
 - Nov. 2013 – Novel Anode Materials and Structures
 - Nov. 2014 – Novel Cathode Materials and Structures

This presentation does not contain any proprietary, confidential, or otherwise restricted information.
New Electrolyte Projects

<table>
<thead>
<tr>
<th>Investigator</th>
<th>Institution</th>
<th>Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>K. Amine</td>
<td>ANL</td>
<td>Advanced Electrolytes and Electrolyte Additives</td>
</tr>
<tr>
<td>C.A. Angell</td>
<td>Arizona State</td>
<td>Sulfones with Additives as Electrolytes</td>
</tr>
<tr>
<td>W. Henderson</td>
<td>North Carolina State</td>
<td>Inexpensive, Nonfluorinated (or Partially-Fluorinated) Anions for Lithium Salts and Ionic Liquids</td>
</tr>
<tr>
<td>B. Lucht</td>
<td>U. of Rhode Island</td>
<td>Development of Electrolytes for Lithium-ion Batteries</td>
</tr>
<tr>
<td>D. Scherson and J. Protasiewicz</td>
<td>Case Western Reserve</td>
<td>Bifunctional Electrolytes for Lithium-ion Batteries</td>
</tr>
</tbody>
</table>
New Anode Projects

<table>
<thead>
<tr>
<th>Investigator</th>
<th>Institution</th>
<th>Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>K. Chan</td>
<td>Southwest Research Institute</td>
<td>Synthesis and Characterization of Si Clathrates for Anode Applications in Li-ion Batteries</td>
</tr>
<tr>
<td>Y. Cui</td>
<td>Stanford</td>
<td>Wiring Up Silicon Nanoparticles for High-Performance Lithium-ion Battery Anodes</td>
</tr>
<tr>
<td>A. Dillon</td>
<td>NREL</td>
<td>ALD for Stabilization of Amorphous Silicon Anodes</td>
</tr>
<tr>
<td>Y. Gogotsi</td>
<td>Drexel</td>
<td>New Layered Nanolaminates for Use in Lithium Battery Anodes</td>
</tr>
<tr>
<td>P. Kumta</td>
<td>U. of Pittsburgh</td>
<td>Nanoscale Heterostructures and Thermoplastic Resin Binders: Novel Li-ion Anode Systems</td>
</tr>
<tr>
<td>M. Thackeray</td>
<td>ANL</td>
<td>Three-Dimensional Anode Architectures and Materials</td>
</tr>
<tr>
<td>S. Whittingham</td>
<td>Binghamton U.</td>
<td>Metal-Based High-Capacity Li-ion Anodes</td>
</tr>
<tr>
<td>D. Wang</td>
<td>Penn State</td>
<td>Synthesis and Characterization of Polymer-Coated Layered SiOₓ-Graphene Nanocomposite Anodes</td>
</tr>
</tbody>
</table>

This presentation does not contain any proprietary, confidential, or otherwise restricted information.
New Cathode Projects

- 102 white papers received
- Initial review completed
- Full proposals requested
- Selections expected summer 2011
2011 Plans

- New focus groups to understand critical issues with high-voltage spinel cathodes and Si anodes
 - LiMn$_{1.5}$Ni$_{0.5}$O$_4$ system: side reactions and transport properties. Will continue to understand and improve this system and the electrolytes to be used with it.
 - Si anode: define a baseline for new binder studies, investigate shape and morphology impacts on cycling, and new surface coatings and additives to stabilize the anode.
- Complete evaluation of new cathode project proposals and award new contracts
- Solicit new proposals for advanced diagnostics, modeling and assembly of battery materials and electrodes

This presentation does not contain any proprietary, confidential, or otherwise restricted information.