

Overcharge Protection for PHEV Batteries

Guoying Chen and Thomas J. Richardson Lawrence Berkeley National Lab May 09, 2011

Project ID: ES037

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start date: March 2009
- End date: ongoing
- Percent complete: ongoing

Budget

- Total project funding
 - FY09 \$190K
 - FY10 \$190K
 - FY11 \$250K

Barriers Addressed

- Cycle life
- Abuse tolerance for PHEV Li-ion batteries

Partners

- ANL, BNL, INL, and SNL
- Berkeley program lead:
 Venkat Srinivasan

Objectives\Milestones

Objectives

- Develop a reliable, inexpensive overcharge protection system.
- Use electroactive polymer for internal, self-actuating protection.
- Minimize cost, maximize rate capability and cycle life of overcharge protection for high-energy Li-ion batteries for PHEV applications.

Milestones

- Report the properties of alternative high-voltage electroactive polymer candidates (July 2011).
- Report overcharge protection performance of modified polymer composite separators and cell configurations (September 2011).

Why Overcharge Protection

- Batteries are overcharged for a variety of reasons:
 - Cell imbalance due to manufacturing inconsistencies or temperature/ pressure variations during cycling
 - Charging at normal rates exceeding electrode capacity
 - Charging at a rate too high for one electrode (commonly the anode) without exceeding the maximum voltage
 - Over-voltage excursions for short or long periods
 - Low-temperature operation under high internal resistance
- Overcharging Li-ion batteries can lead to:
 - Cathode degradation, metal ion dissolution, O₂ evolution
 - Electrolyte breakdown, CO₂ evolution
 - Li deposition on anode, H₂ evolution
 - Overheating, breakdown of anode SEI layer and thermal runaway
 - Current collector corrosion
 - Explosion, fire, toxics released
 - Accelerated capacity/power fade, shortened battery life

Approach

Incorporating a reversible, resistive polymer shunt regulated by cell voltage

- "Sandwich-type" configuration
 electroactive polymer
 impregnated in the separator
 between the battery electrodes
- Parallel configuration –
 Electroactive polymer placed
 between the current collectors,
 outside the electrode assembly

Advantages of Our Approach

Advantages over external methods (such as integrated control circuits)

- Inexpensive as only a small amount of polymer needed
- Minimum weight and volume
- Self-actuated internally for cell balancing

Advantages over internal methods (such as redox shuttles)

- Good rate capability
- No interference with the cell chemistry
- No solubility and volatility issues
- Versatile as cell holding potential is varied by the choice of polymer, polymer morphology and distribution, system configuration
- Capable of low temperature protection, no diffusion limitation

Electroactive Polymers

Reversible redox couple

SOC dependent conductivity

• Unique properties of electroactive polymers make them suitable for overcharge protection.

Overcharge Protection Mechanism

- At positive electrode, polymer is not fully oxidized but highly conductive.
- At negative electrode, polymer remains in neutral state, where most of the potential drop occurs.
- Polymer is capable of carrying a large amount of current.

Polymer Requirements for PHEV Protection

- Highly reversible redox couple situated above the end-ofcharge voltage of 4 V class cathodes
- Rapid change in electronic conductivity during the redox process to establish a steady state potential and create negligible self-discharge
- High conductivity at oxidized state for high rate capability (2C and above)
- Compatible with cell chemistry, no side reactions
- Stable under aging and cycling conditions for long battery life (15 year life, 300,000 Cycles)
- Low cost

Redox Potential and Stability

- Onset oxidation voltage is 4.1 V.
- Good reversibility at high voltage.

Redox Potential and Stability

- Onset oxidation voltage is 4.25 V.
- Slightly improved stability at low voltage.

- Polymer impregnated into the separator by solution casting.
- Simple process but non-uniform distribution and poor utilization of the polymer.

- Aligned nanorods extend the full thickness of the AAO template prepared by electrochemical deposition.
- Each polymer nanorod is capable of providing a direct, high-current path between the electrodes.

- Polymer fibers prepared on Al substrate by electrospinning.
- Aspect ratio of the fibers are easily adjusted by synthesis conditions.
- Process is easy to scale up.

- Polymer nanotubes electrochemically deposited in AAO template.
- Pore size and length of the nanotubes tunable.

- Rate capability improved with new polymer morphologies.
- Highest sustainable current density achieved in the nanotube composite.
- Ten times improvement compared to the previous morphology.

Polymer Composite Membranes

- P3BT/P(VDF-HFP) composite membranes prepared by solution casting.
- Polymer ratio has minimal impact on separator morphology.
- Need to increase density for use as separators.

Polymer Composite Membranes

- Best rate capability achieved with 40% of electroactive polymer.
- Further optimization is planned.
- The process will be applied to make composite membranes incorporating fibers and nanotubes of the electroactive polymers.

Overcharge Protection – Spinel

"Swagelok-type" Cell

- Overcharge protection with single electroactive polymer.
- C/4 rate, 20% overcharged at a holding voltage of 4.3 V.
- Long term stability is under further evaluation.

Overcharge Protection – Spinel

- Slightly higher discharge capacity in the protected cell.
- No self-discharge observed.
- Rate capability up to 1 mA/cm² (2C).

Overcharge Protection – Gen 2

"Swagelok-type" Cell

 C/12 rate, 20% overcharged at a holding voltage of 4.4 V.

Overcharge Protection – Pouch Cell

Pouch Cell "sandwich-type" configuration

- C/7 rate, 20% overcharged at a holding voltage of 4.6 V.
- Initial test showed overcharge protection for over ten cycles.

Overcharge Protection – Pouch Cell

Pouch Cell parallel configuration

- Area ratio between the polymer and the electrode is 40:60.
- C/6 rate, 20% overcharged at a holding voltage of 4.4 V.
- Lower internal resistance in the parallel configuration.

Collaborations

- Robert Kostechi (LBNL) Raman and FTIR Spectroscopy
- John Kerr (LBNL) TGA and DSC
- Vince Battaglia, Marca Doeff (LBNL) Electrode fabrication
- Gao Liu (LBNL) Polymer synthesis
- Yueguang Zhang (Molecular Foundry) Electrospining

Future Work

- Prepare composite separators with electroactive polymer fibers and nanotubes, and evaluate their rate capability and cycle life.
- Investigate other high-voltage electroactive polymers that may be suitable for overcharge protection for PHEV batteries. Optimize their morphology for maximum protection.
- Explore other cell configurations that may lead to improved protection and lowered cost.
- Investigate practical issues in "scaling-up" the concept.

Summary

- A high-voltage polymer was found to have improved stability at low voltage. It provided overcharge protection for various battery chemistries.
- Polymer nanotubes were found to carry higher current densities compared to other morphologies.
- Ways to cast composite separators incorporating electroactive polymer were explored.
- Overcharge protection was achieved in pouch cells in both "sandwich-type" and parallel configurations.
 The latter was found to have lowered holding potential due to reduced internal resistance.

Technical Back-Up Slide

Oxidation Potentials of Studied Polymers

Poly(3-butylthiophene) (P3BT, V_{onset} = 3.2 V)

Poly[2-methoxy-5-(2'ethylhexyloxy)-1,4phenylenevinylene] (MEH-PPV, V_{onset} = 3.6 V)

Poly(3-phenylthiophene) (P3PT, V_{onset} = 3.9 V)

Poly(9,9-dioctylfluorene) (PFO, V_{onset} = 4.1 V)

Poly(4-bromo triphenylamine) (PBTPAn, V_{onset} = 3.7 V)

Polytriphenylamine (PTPAn, V_{onset} = 3.8 V)

$$- \left[\begin{array}{c} H \\ N \end{array} \right]_n$$

Polydiphenylamine (PDP, $V_{onset} = 3.7 \text{ V}$)

Poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(1,4-phenylene)] (PFOP, V_{onset}= 4.25 V)