High Voltage Electrolytes for Li-ion Batteries

PI: T. Richard Jow

U. S. Army Research Laboratory
2800 Powder Mill Road
Adelphi, MD 20783
17 May 2012

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Overview

Timeline
- Start: June 2011
- End: Dec. 2014
- 50% complete

Barriers
- SOA electrolytes based on carbonate solvents decompose near or above 4.5 V
- Lack of reliable 5 V cathodes as characterization platform.
- Lack of understanding of oxidation stability and reactive pathway of the electrolyte at the cathode/electrolyte interface

Budget
- Total project funding
 - DOE $1,250K
- Funding received in F2011
 - $250K
- Funding for FY12
 - $250K

Partners
- Argonne National Laboratory
- Saft Batteries
- U of Texas, Austin
- U of Utah
- U of Maryland
Objectives

• Develop high voltage electrolytes for high voltage Li-ion batteries for increased energy density
 – Explore and identify solvents or additives for electrolytes that allow the operation of high voltage cathodes
 – Understand the reactive pathways and reaction products at the electrode/electrolyte interface through computation and surface characterization for guiding the development of improved electrolyte components
 – Identify and/or develop structurally stable high voltage cathode materials
Milestones

- **Sep 2010 – Go/No-Go:**
 - Identify solvents and/or additives allowing the operation of high voltage cathodes
 - Develop or identify structurally stable cathodes as a testing vehicle for electrolytes
 - Understand oxidation stability and reactive pathway of electrolytes through computation and experiments

- **May 2011:**
 - Demonstrate the effectiveness of solvents or additives in allowing the improved operations of cells with 4.7 V LiNi$_{0.5}$Mn$_{1.5}$O$_4$ and/or 4.8 V LiCoPO$_4$ cathodes
 - Develop stabilized LiCoPO$_4$ with metal substitution
 - Calculate oxidation potential of solvents and validate with experiments

- **Sep 2012:**
 - Evaluate effectiveness of additives in both half cells and full cells with graphite anode
 - Understand reactive pathways of electrolyte components through computational effort, surface characterization and SEI chemistry studies
Approach

- **Identify and/or develop high voltage cathodes as a testing vehicle**
 - Collaborate with ANL on LiNi\(_{0.5}\)Mn\(_{1.5}\)O\(_4\) and \(x\)Li\(_2\)Mn\(_3\)·(1-x)LiMO\(_2\)
 - Investigate validity of LiCoPO\(_4\)

- **Computational effort**
 - Understand oxidative stability of solvents in electrolytes
 - Understand reactive pathways of additives and electrolytes on cathodes
 - Develop ability to predict and design electrolyte components

- **Develop additives for carbonate based electrolytes**
 - Search additives that would interact and form protective interfacial layers on cathodes
 - Understand interfacial chemistry at the cathode/electrolyte interface through surface characterization techniques
Technical Accomplishments

High voltage cathodes (J. Allen, R. Jow)
• Stabilized 4.8 V LiCoPO$_4$ by Fe doping demonstrated much improved rate capability and capacity retention.
• LiCoPO$_4$ can sustain polaron with slightly higher migration energy barrier than that in LiFePO$_4$ (DFT calculations).

Computational: Electrolytes and Electrode/Electrolyte Interface (O. Borodin, R. Jow)
• Oxidation potentials of solvents calculated using DFT would be lowered by the presence of anions and were more in agreement with experiments.
• Conductivity of Li$_2$EDC calculated using MD simulations agrees well with experiments.
• Energy barrier for conduction is 78 kJ/mol.

Additives for high voltage electrolytes (A. Cresce, J. Ho, J. Read, K. Xu)
• Demonstrated that the full cell, graphite/LiNi$_{0.5}$Mn$_{1.5}$O$_4$, cycled in electrolyte with HFiP additive achieved 80% capacity retention and 99.87% coulombic efficiency in 200 cycles.
• XPS surface analysis revealed the presence of fluorinated alkyl substructure on cathode.
• Higher degrees of fluorination of additives resulted in better cycling performance.
LiCoPO₄ and Stabilized LiCoPO₄

DFT calculations using validated HSE06 at steps along a linearly interpolated path between two calculated polarons.

<table>
<thead>
<tr>
<th></th>
<th>Migration barrier, eV</th>
<th>σ, S/cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiFePO₄</td>
<td>0.20</td>
<td>1.8x10⁻⁸</td>
</tr>
<tr>
<td>LiMnPO₄</td>
<td>0.33</td>
<td><10⁻¹⁰</td>
</tr>
<tr>
<td>LiCoPO₄</td>
<td>0.23</td>
<td>~10⁻⁹</td>
</tr>
</tbody>
</table>

Li₀.⁹₂Co₀.⁸Fe₀.₂PO₄ demonstrated good rate capability.

Overview of Computational Studies

Predict: electrolyte reduction, SEI properties, SEI – electrolyte interface (quantum chemistry, MD)

Oxidation potentials and decomposition reactions for solvent, solvent (or additive)-anion, solvent-lithium salt and additives (quantum chemistry)

- SEI: Li$_2$EDC
- EC: DMC(3:7)/LiPF$_6$

Structure and transport in bulk electrolytes (carbonate-alkylphosphate/LiPF$_6$) and SEI components with a focus of Li$^+$ competitive solvation in mixed solvents: (MD simulations)

MD and DTF studies revealed:
- The presence of BF$_4^-$, PF$_6^-$, ClO$_4^-$, or B(CN)$_4^-$ anion lowered the carbonate solvent oxidation potential by H$^-$ and F$^-$ abstraction and promoted decomposition kinetics;
- Fluorine transfer was observed for HFiP/PF$_6^-$-complexes.

λ of Li$_2$EDC, (LiO$_2$COCH$_2$)$_2$, predicted using MD simulations with revised and validated FF.
- **λ** is in good agreement with experimental data.
- Activation energy: 78 kJ/mol

Experiment Phil Ross LBNL (ARL material)

Battery pic from Kang Xu
Influence of anions, salt, explicit solvent and CoPO$_4$ surface on EC oxidation was investigated.

- Oxidation potential of (EC)$_2$, at $\varepsilon=20$, is the lowest indicating that it might be the preferred pathway for oxidation at non-active electrodes compared to the EC-anion decomposition.
- Co-O bond is formed between CoPO$_4$ and EC.

Vehicle Technologies Program M052/cc-pvTz level calculations
Lindan Xing Uof Utah calculations. Relative energy (kcal/mol) from B3LYP/6-311++G(d) PCM(Solvent=water)

Vehicle Technologies Program

In collaboration with BATT program

Relative energy of initial product

Relative energy of TS
A revised polarizable force field has been developed for Li$_2$EDC that is compatible with APPLE&P electrolyte force field.

E_a for Li$_2$EDC conductivity was 78 kJ/mol, which is similar to the 68 kcal/mol measured for the Li$^+$ charge transfer at the graphite/electrolyte interface.

The averaged conductivity of crystalline Li$_2$EDC is similar to conductivity of the amorphous phase.

At temperatures below 450 K anion motion contributes less than 15% to charge transport.
Correlation of Experiment and Computation

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Experiment</th>
<th>Computation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eₐ for Li⁺ charge transfer at interface ¹</td>
<td>Eₐ for Li diffusion</td>
<td>68 kJ/mol</td>
</tr>
<tr>
<td>Graphite/Electrolyte interface</td>
<td>78 kJ/mol for Li conduction barrier in Li₂EDC ³, a key SEI component</td>
<td></td>
</tr>
<tr>
<td>NCA/Electrolyte interface</td>
<td>52 kJ/mol</td>
<td></td>
</tr>
<tr>
<td>LFP/Electrolyte interface</td>
<td>32 kJ/mol</td>
<td></td>
</tr>
<tr>
<td>Li diffusion in LFP</td>
<td>29 kJ/mol ²</td>
<td>20 kJ/mol for polaron migration barrier in LFP ⁴</td>
</tr>
</tbody>
</table>

NCA: Lithium nickel cobalt aluminum mixed oxide, **LFP**: lithium iron phosphate

High Voltage Electrolyte Additives

A. v. Cresce, J. Ho, J. Read, and K. Xu

Electrochemistry Branch
U. S. Army Research Laboratory
Adelphi, MD 20783-1197, USA
Different Focuses on Anode- and Cathode-Interphases

Anode:
- Faster Li$^+$-transport
- Less consumption of Li$^+$ (irreversible capacity)

Cathode:
- Stabilization at high potential (> 4.5 V)

Li$^+$-solvation no longer plays directing role in cathode SEI formation mechanism
Interphases on Anode and Cathode

Anode (Graphitic)
- Reductive decomposition
- Lithiation process
 - Solvent co-intercalation
 - Lattice held together by van de Waals force
- 3D: partially penetrated graphene
- Coverage of Li\(^+\)-exit/entrance sites
 - kinetic control over Li\(^+\)-transport

Cathode (Metal Oxide)
- Doubt still exists about the existence
 - potential < 4.5 V vs. Li (\(~1.5\) V vs. SHE)
- Oxidative decomposition
- Delithiation
 - Solvent co-intercalation impossible
 - Lattice held together by Coulombic/covalent
 - “Patchy” instead of “continuous”
- No coverage of Li\(^+\)-exit/entrance sites
 - deactivation of metal cores

In the last two decades >90% effort are on anode SEI.
Preliminary Results (A. v. Cresce)

- New electrolyte forms stable interphase on both spinel LiNi0.5Mn1.5O4 and olivine LiCoPO4 surfaces
- Baseline electrolyte: LiPF6/EC/EMC (30:70)
- 1% additive causes significant impact on cell stability
- Further refinements are on-going

Cresce & Xu, JES, 2011, 158, A337
Confirmation from industry partner
• CE% ~ 99.87%
Surface Chemistries of HFiP

Where did HFiP end up with?
- Chemically phosphate can be reduced at anode
- It was found to even form good SEI on graphite in neat PC

What mechanism did it stabilize electrolyte against cathode surface?
HR-XPS conducted on both cathode and anode cycled in baseline and HFIP-containing electrolytes
- P 2p absent in control samples
- P2p on test samples
 - 5~10 X more on cathode than anode
- C1s for CF3 only found on cathode

The fate of phosphate in electrolyte
- Phosphate ends up on cathode and anode
- Fluorinated alkyls substructure on cathode
Even HR-XPS cannot pin-point the structure of cathode interphase
 • Perhaps inference from MS?

- Possible participation of TM cores (TM reduction)
- New bond-formation between M and O/P/F/C
- Deactivation on cathode surface at TM centers
 • similar to catalyst poisoning
 • spectroscopic evidence

1.2 Kg HFiP made at ANL
GC-MS by Dzwinel (ANL)
Interphase on Electrolyte/Cathode
Unlike Electrolyte/Anode Junction, interphase on cathode is little studied
- Oxidation Chemistry unknown
- Formation mechanism?
- Perfluorination helps
- Phosphazene might help (?)
Synthesis of Perfluorinated Additive PFBP
(Drs. XQ Yang and HS Lee, BNL)

- Presence of remaining H in HFiP undesired
- Perfluorinated additives synthesized

![Perfluorinated additive PFBP structure]

Graph showing cycle number versus capacity/mAh for different electrolytes:
- **Baseline: 1.2 M LiPF$_6$ in EC/EMC (30:70)**
- **Baseline + 5 mM PFBP**
- **Baseline + 10 mM AFAC**

ANL LMNO/GR Full Cells

- ARL-made PBFP additive
- New ARL Al-based additive
- Standard electrolyte
A New 5 V Battery Chemistry: Double Intercalation (J. Read, ARL)

- Double-intercalation chemistry
- Symmetric graphite cell
- High voltage (> 5.0 V)
- Concept was proposed in early 1990s (J. Dahn)
 - never realized due to lack of electrolytes:
 - good SEI on anode, high V stability on cathode
 - our high V electrolytes could revive this concept
Future Work

- Collaborate with ANL on $\text{LiNi}_{0.5}\text{Mn}_{1.5}\text{O}_4$ and $x\text{Li}_2\text{MnO}_3 \cdot (1-x)\text{LiMO}_2$ for the testing of ARL electrolytes.
- Continue the development of stabilized LiCoPO_4.
- Perform computational screening of redox stability and decomposition reactions of the fluorinated alkylphosphate-based additives using DFT calculations. Predict bulk and interfacial properties of electrolytes with fluorinated alkylphosphate-based additives.
- Study decomposition reactions of solvent and additives at cathode surfaces.
- In-situ/Direct characterization of SEI under Li ion chemistry environments
- Synthesis of new solvents/additive based on more understanding about the chemical processes at interphases
Summary

- Stabilized high voltage $\text{Li}_x\text{Co}_{0.8}\text{Fe}_{0.2}\text{PO}_4$ in couple with the high voltage electrolyte has greatly improved the capacity retention and rate capability
 - Stability of the cathode materials including $\text{LiNi}_{0.5}\text{Mn}_{1.5}\text{O}_4$ and $\text{xLi}_2\text{MnO}_3\cdot(1-\text{x})\text{LiMO}_2$ are critical for the success of high voltage Li-ion batteries

- Oxidation potentials and reactive pathway of EC and alkyl phosphate has been successful calculated with respect to the influence of anion, salt, explicit solvent and CoPO_4 computationally.
 - The conductivity of Li_2EDC was calculated using MD simulation and agrees with experiment.
 - The presence of BF_4^-, PF_6^-, ClO_4^-, or B(CN)_4^- anion lowered the carbonate solvent oxidation potential by H^- and F^- abstraction and promoted decomposition kinetics;
 - Fluorine transfer was observed for HFiP/PF_6^- complexes.

- Effectiveness of HFiP additive has been successfully demonstrated in a full cell, graphite/$\text{LiNi}_{0.5}\text{Mn}_{1.5}\text{O}_4$, cycled in electrolyte with HFiP additive achieved 80% capacity retention and 99.87% coulombic efficiency in 200 cycles.
 - XPS surface analysis revealed the presence of fluorinated alkyl substructure on cathode.
 - Higher degrees of fluorination of additives resulted in better cycling performance.
 - Elevated temperature tests are on-going