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Key Challenges for Thermoelectrics 
in Combustion Systems 

Stable interfaces with targeted 
electrical, mechanical, thermal 
properties. 
 
TE materials (p and n-type) that 
are thermally stable at operating 
temperatures and cost effective. 
 
 
Performance testing of TE 
material–metallization/interface, 
which allow better prediction of 
system performance including 
interfaces 
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Special Challenges for TEGs 

• Thermal interfaces degrade efficiency of waste 
heat recovery systems (TE) 
 

• Interfaces must accommodate mismatch in 
thermal expansion coefficient 
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Nanostructured Interface Solutions 



 Composite interface material combines 
nanotubes with low melting temperature 
binders. 
 

 Binders improve thermal contact to 
substrates and allow attachment during 
packaging/assembly 

Removable 
mechanical 
backer 

Nanofibers 

Low melting temperature 
binder (e.g. alloys of Ga, In, 
Sn) 

Adhesion layer 

Adhesion layer wets nanotubes and 
promotes adhesion of binder (Pd, 
Pt, or Ti). 

Upon heating, the low melting binder 
conforms to CNT and substrate topography. 

~100 nm is the 
typical variation in 
CNT height. 

Nanostructured Interface Solutions 
Patents issued (SRC sponsorship) 

Heat to melt binder 

Substrate

Substrate
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Thermal Interface Materials Requirements 
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Gao, Shakouri, Goodson et al.,  “Nanostructured Interfaces for Thermoelectrics," Proc. ICT 2009.   J. Electronic Materials (2010).   

Gao et al., (2010) 
See next page 

Year 2 DOE-NSF  Project 
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A Brief Overview of the Research Activities at Stanford 
ThermoElectric Module/Pellet Nanostructured Interfaces  

Gao, Panzer, Goodson et al., J. 
Electronic Materials, 2010 
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Barako, Gao, Marconnet, Asheghi, 
Goodson, “Solder-Bonded Nanotube 
Thermal Interface Materials,” to 
appear in Proceedings of ITHERM, 
San Diego, May, 2012. 

Barako, Park, Marconnet, Asheghi, Goodson, “Infrared Imaging 
and Reliability Study of Thermoelectric Modules under Thermal 
Cycling,” to appear in Proceedings of ITHERM, San Diego, 
May, 2012. 

Marconnet, Motoyama, Barako, Gao, Pozder, 
Fowler, Ramakrishna, Mortland, Asheghi, and 
Goodson, “Nanoscale Conformable Coatings 
for Enhanced Thermal Conduction of Carbon 
Nanotube Films,” to appear in Proceedings of 
ITHERM, San Diego, May, 2012. 
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Nanofoil Bond

Nanoscale Conformable 
Coatings for Enhanced Thermal 
Conduction of CNT Films 

Solder-Bonded Nanotube Thermal 
Interface Materials 

2 μm

Electrodeposited 
Metal Nanowire TIMs 

Michael Barako,  
Unpublished research 

High Temperature IR Imaging & 
Characterization 
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Approach:  Interface Characterization on 
Thermoelectric with Thermal Cycling 
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Resistances for 1.5, 2.5, and 40 micron 
thick CNT films varied between 0.035 
and 0.055 cm2 oC/W, with evidence of 
decreasing engagement with 
increasing film thickness. 

Gao, Shakouri, Goodson et al.,  “Nanostructured Interfaces for Thermoelectrics," Proc. ICT 2009. 
 J. Electronic Materials (2010).   

Cycles (30 to 200 C, 6min) 
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Thermal Cycling of TE Modules 

Thermoelectric performance was characterized 
during thermal cycling. Performance analysis 
includes: 
•Individual TE properties 
•Figure of Merit ZT 
•High resolution imaging of mechanical failure 
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A modified Harman technique was developed to 
measure the TE figure of merit ZT and the electrical 
resistance R. 
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Low DC current is sourced (10 mA) and the thermal 
and electrical components of voltage are measured. 

Thermal conductivity and Seebeck 
coefficient remain relatively stable 
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Infrared Failure Analysis of TE Modules 
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Indium Bonding 
•Indium (In) foil† is obtained (25 μm thick).  
•Cleaned and etched using: 

1. Acetone 
2. Isopropyl alcohol 
3. Deionized water 
4. Solder flux 5R 

† Indium foil by Indium Corp. 

Glass 

Si 

CNT 

In 

Hotplate 

•The foil is compressed between the CNT film and the glass substrate with 
light pressure 
•The stack is placed on a hot plate at 180oC for one minute. This melts and 
bonds the indium to the adjacent surfaces. (Tmelt = 156.6oC)  
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Barako, Gao, Marconnet, Asheghi, Goodson, “Solder-Bonded 
Nanotube Thermal Interface Materials,” to appear in 
Proceedings of ITHERM, San Diego, May, 2012. 



Nanofoil Bonding 

12 

•Nanofoil‡ (NF) is a 40μm Al/Ni superlattice which ignites and 
exothermically alloys to adjacent surfaces 
 
•NF is placed between two gold surfaces. Pressure is applied 
and the NF is ignited, bonding the two surfaces 
 
•Sn-plated NF bonds Au surfaces (forming Sn-Au bonds). The 
resulting intermetallic is stable up to 1000oC 

‡ Nanofoil® by Indium Corp. 

b) NF alloys to form Sn-Au 
bonds to adjacent surfaces 
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Barako, Gao, Marconnet, Asheghi, Goodson, “Solder-Bonded 
Nanotube Thermal Interface Materials,” to appear in 
Proceedings of ITHERM, San Diego, May, 2012. 
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Infrared Microscopy 

1. The sample is placed between two pieces of glass. This entire 
stack is placed between a heat source and a heat sink. 
 

2. Heat conducts through the sample and a steady state, 1-D 
temperature field is established according to Fourier’s Law. 
 

3. The cross-sectional temperature map is recorded using the IR 
microscope 
 

4. From the IR temperature map, each cross-section is averaged 
to generate a 1-D temperature profile through the stack 
 

5. The conduction heat flux is calculated using the temperature 
gradient in the glass reference layers and Fourier’s Law: 
 
 
 

6. The amount of heat lost to convection and radiation is equal to 
the difference in heat flux values from the two reference layers. 
This was always found to be less than 10% of the total heat 
transfer. 
 

Comparative infrared (IR) microscopy is used to determine: 

• thermal conductivity of the CNT film  
• boundary resistance of the bonded interface  
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Thermal Properties after Bonding: 
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Impact of CNT Volume Fraction on Intrinsic Thermal Conductivity 
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Electrodeposited Metal Nanowire TIMs 

Cu 

Cu NW 
Nominal geometry: 
•Cylindrical NWs 
•10 μm film 
thickness 
•200 nm diameter 

a) Polycarbonate membrane is 
etched to create cylindrical pores 

b) Catalyst Pt/Pd is deposited on 
one side of the membrane 

c) Metal is eletrodeposited 
into the pores 

d) Membrane is etched away, 
leaving freestanding nanowires 

10 μm 

SEM of copper NW film: 

2 μm
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• Picosecond thermoreflectance technique. 
• Uncertainty is due to current sample preparation techniques) 
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Where electrode was 
attached for electroplating

5 μm

4 μm

20 μm

No CNTs at this spot in SEM

10 μm

Uniform coating & Grain Size  
most of the area except where 
the electrode is attached 

Nanoscale Conformable Coatings for Enhanced Thermal 
Conduction of Carbon Nanotube Films 

Marconnet, Motoyama, Barako, Gao, Pozder, Fowler, 
Ramakrishna, Mortland, Asheghi, and Goodson, 
“Nanoscale Conformable Coatings for Enhanced 
Thermal Conduction of Carbon Nanotube Films,” to 
appear in Proceedings of ITHERM, San Diego, May, 
2012. 



A custom-fabricated vacuum enclosure with integrated heat 
exchanger will be built to achieve >500 C temperature gradient 
across a TE sample and facilitate simultaneous electrical and 
optical measurements. 
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 Ytterbium (Yb) partially-filled skutterudites 
• Partial filling optimizes lattice thermal conductivity reduction1 
• Yb intermediate valence in CoSb3 maximizes filler concentration while  minimizing 

added carriers2 

 P-type Ba partially filled skutterudites (high temp measurements at NIST & Clemson U.) 
 Amorphous intermetallic alloys3 (in collaboration with General Motors) 
 Bi2Te3-alloys for High Resolution Infra-Red Thermometry (in collaboration with Marlow Ind.) 
 Survey of other material systems with potential for enhanced thermoelectric properties 
   1. G.S. Nolas, et al, Phys. Rev. B 58, 164 (1998) 
   2. G.S. Nolas, et al, Appl. Phys. Lett. 77, 1855 (2000) 
   3. G.S. Nolas and H.J. Goldsmid, Phys. Stat. Sol. 194, 271 (2002) 
  
  

Bulk TE Materials for Automotive Applications 

    Glen Slack initiated PGEC concept with skutterudites: 
 

 Fillers should be loosely bonded to the cage-forming atoms. 
 Fillers should have large atomic displacements. 
 Fillers act as independent oscillators (“rattlers”). 
 Interaction of rattlers with the normal modes should  
    lower lattice thermal conductivity. 
 Phonon-scattering centers (“rattlers”)  should not  
    greatly affect electronic properties. 

filler 
Co, Fe 
Sb, As, P 
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Thermal Conductivity  
of Yb-filled Skutterudites 

1. G. S. Nolas, et al, Appl. Phys. Lett. 77, 1855 (2000) 
2. P. F. Qiu, et al, J. Appl. Phys. 109, 063713 (2011) 
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 Ternary-substituted skutterudites may hold more potential for n-type 

– XCo4B12      B = Sb  (Ge,Sn)/ (S,Se,Te) 
– Higher Seebeck coeffs than CoSb3 

 Filling of ternary skutterudites weakly affects the Seebeck maxima 
– Changes the carrier concentration significantly  

Seebeck coeff 

Smaller grains

d
,n)v(

τ phph

q
+=

−τ
11

• New method developed for ab-initio thermal conductivity 
prediction.  Grain boundary scattering term included in thermal 
conductivity 

• Effect of scattering noticeable at 300K for 500nm grains 
• Grain boundary scattering much less effective at high T for 

skutterudites 

Nanostructure Design for Thermal Transport 
Effects of Fillers on electronic  

Properties of Skutterudites 

•The effect of filling distorts the structure locally.  
•Soft Sb rings accommodate the distortion. 
•Electrons from filler open band gap, while volume expansion 
closes the gap.  
•Effect of force constants more important than filler mass. 
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Concluding Remarks and Future Work 

• It appears that the CNT-based nanostructured thermal interface 
material (TIM) can meet (and possibly exceed) both the thermal 
and mechanical property requirements for TEGs application.  
 
• Extensive life time thermal cycling and high temperature 
stability studies of the nanostructures interface materials are 
required and will be the focus our effort in the 2nd year of the 
DOE-NSF project. 
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Extra Material 



 
 
 
 

 

Project Goals and Deliverables 
Major Goals 

 
• Development of CNT-nanostructured interface materials with enhanced thermal/mechanical/electrical properties for high-T 
TE applications. 
• Development of high-temperature thermoelectric materials (e.g., filled Skutterudites) with enhanced transport properties. 
• Ab-initio atomic-level modeling of high-temperature thermoelectric materials and interfaces in conjunction with experimental 
design and optimization, see above.   
• Development of novel experiments and characterization tools for in-situ performance and reliability testing of TE module 
(pellet pairs and CNT-interfaces) and constituent components. 
• System design optimization by combining all thermal, fluidics, stress, electrical and thermoelectric components for realistic gas 
flow conditions. 

 

•Deliverables  
 

•Development of materials and techniques for integration of CNT TIMs into thermoelectric devices. 
•Thermal (thermal conductivity and thermal interface resistance), mechanical (Young’s Modulus ) and electrical 
characterization of stand-alone CNTs films 
•In-situ IR imaging for reliability testing of TE module. 
•In-situ TE module performance and reliability evaluations under realistic thermal cycling senarios. 
•Thermoelectric material (high-T) engineering and design: optimization of partial void filling, including optimized iron-
substituted compositions for p-type conduction; small grain and nano-scale inclusions from refractory materials within bulk 
polycrystalline skutterudites.  Investigation of the structural, morphological, chemical and low-temperature transport with 
filling fraction, doping, grain-size, and inclusion concentration. 
•Ab-initio modeling of interfaces (thermodynamic stability (e.g., phase diagrams) and mechanical characteristics (e.g., Thermal 
expansion coefficients and elastic moduli of materials 
•Ab-initio modeling of transport properties of TE materials  
•System design optimization by combining all thermal, fluidics, stress, electrical and thermoelectric components for realistic 
gas flow conditions. 

 



10
0

10
1

10
2

10
3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

Length [µm]

T
he

rm
al

 B
ou

nd
ar

y 
R

es
ist

an
ce

 [m
m

2  K
 W

-1
]

 

 
    

    
    

    
    

    
    
    

    
    

    
    

RCNT-S2 RCNT RS1-CNT 

S1 
CNT 

S2 

Total and Intrinsic TBR for Bonded CNT Films 

102 1
 

 
 

 
 

 

 

 

Yang et al. (2002,2004)
Tong et al.  (2007)
Tong et al.  (2006)
Pal et al.  (2008)
Son et al.  (2008)
Xu et al.  (2006)
Zhang et al.  (2008)
Xu et al. (2006a)
Xu et al. (2006b)
Cola et al.  (2008)
Hodson et al.  (2011)
Cola et al.  (2007)
Aradhya et al.  (2008)
Cross et al.  (2010)
Panzer et al.  (2008)
Hu et al.  (2006)
Gao et al.  (2010)
Barako et al.  (2012)
Marconnet et al.  (2011)
Marconnet et al.  (2012)

    
    

    
    

    
    

    
    

    
    

    

SiGe- 
CNT-Pt 

Si-CNT-Pt 

Si-CNT-Quartz 

Si-CNT-Ag 
Si-CNT-Al 



Modulus Variation with CNT Thickness 

Maruyama  Lab Samples 
(SWNT), 95 kg/m3 

Monano 
Samples 
(MWNT),  
~30 kg/m3 

Wardle Lab 
Samples/MIT 
(MWNT), 45 kg/m3 

Thickness 
(μm) 

Modulus 
(MPa) 

Density 
(kg/m3) 

CNTTop 0.4 140 >29 

CNTMiddle 0-150 7 29 

Si 8.7 155e3 2330 

Crust Model for Monano Samples 

52 
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R’’th 
[W/m2/K] 
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Solders  
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Ideal CNT  
~10-7 ~10-12 

High Quality 
CNT ~10-6 ~10-10 

Lower Quality 
CNT ~10-5 ~10-8 

Thermally & 
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Conductive 

Grease 
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Thermal 
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~8x10-6 >10-5 

Effect of Interface Resistances 
on Thermoelectric Device Properties 
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