Super Truck Program: Vehicle Project Review

Recovery Act – Class 8 Truck Freight Efficiency Improvement Project

Derek Rotz (PI: Vehicle), Kevin Sisken (PI: Engine)
Presenter: Derek Rotz
Daimler Truck North America LLC
May 17th, 2012

Project ID: ARRAVT080
Overview

Timeline

- Project start: April 2010
- Project end: March 2015
- Percent complete: 40%

Barriers

- Resolve thermal & fluid dynamics tradeoffs between Aero & cooling
- Rejecting more heat in a smaller, aerodynamic hood & engine compartment
- Development of safe and efficient High Voltage power distribution, integrating multiple HV energy sources
- Making tradeoffs between efficiency, cost and weight
- Vehicle controls integration (Aux, Hybrid, Powertrain, Waste Heat, Predictive)

Budget

- Total project $79,119,736
- Vehicle Budget $47,486,735
 - DOE Share(*) $6,100,000
 - DTNA Share (*) $6,100,000

Partners

- Detroit Diesel
- Schneider National, Walmart
- National Renewable Energy Lab
- Oregon State University
- Strick Trailer
- Michelin
- …

(*) through Feb, 2012 for vehicle R&D expenses only, engine R&D expenses reported separately
Objectives and Milestone

Develop and Demonstrate a 50% total increase in vehicle freight efficiency:
- At least 20% improvement through a heavy-duty diesel engine capable of achieving a 50% brake-thermal efficiency
- Identify key pathways towards achieving 55% through modeling and analysis

<table>
<thead>
<tr>
<th>Timeline</th>
<th>Phase Description</th>
<th>Milestones</th>
</tr>
</thead>
</table>
| 4/10–3/11 | Analysis: (1) Technology Modeling/Analysis and Initial Component Development and Demonstration | Develop analytical roadmap:
• 50% vehicle freight efficiency improvement
• 50% engine brake thermal efficiency |
| 4/11–3/12 | Specification: (2) Experimental Demonstration of Technology Building Blocks for Intermediate Goals | Experimentally demonstrate technology building blocks:
• 25% vehicle freight efficiency improvement *(system level test)*
• 46% engine brake thermal efficiency |
| 4/12–5/13 | Design: (3) Technology Identifications and Final Component Development and Demonstration | Identify and initially develop technology building blocks:
• 50% vehicle freight efficiency improvement *(system level test & analysis)*
• 50% engine brake thermal efficiency |
| 6/13–6/14 | Build: (4) Experimental Demonstration of Technology Building Blocks for 50% Engine Thermal Efficiency and 50% Vehicle Efficiency | Experimentally demonstrate technology building blocks:
• 50% vehicle freight efficiency improvement *(system level test)*
• 50% engine brake thermal efficiency |
| 7/14–3/15 | Test: (5) Final System Integration and Demonstration | Experimental demonstration:
• 50% vehicle freight efficiency improvement *(entire vehicle test)*
• 50% engine brake thermal efficiency *(engine test)*
• 55% engine brake thermal efficiency *(engine analysis)* |
Phase I Milestone Completed

Analytical Roadmap Development to 50% Vehicle FEI & 50% Engine BTE

Baseline Tractor

• 2009 Cascadia 125"BBC, 72"RR
• DD15 Engine 455hp/1550 lb-ft

Vehicle Test

• Baseline Performance Measurements
• Highway Cycle (55 & 65 mph)
• Idle Cycle (summer, winter)
• City Cycle

SuperTruck

Modeling & Analysis

• Establish System Level Technical Targets

Roadmap: Vehicle

Roadmap: Engine
Phase 2 Milestone Status

Experimental testing to 25% vehicle freight efficiency

Freight Efficiency Improvement % - (system level measurements)

- Aerodynamics (Scale WT) 10.0%
- Powertrain Drivetrain 7.5%
- Lightweight 5.0%
- Energy Management (incl. idle reduction) 3.5%
- Parasitic Losses 1.0%
- Hybrid (FE test Q3, 2012) 9.0%
- Engine (to 46% BTE) 25.0%

This presentation does not contain any proprietary, confidential, or otherwise restricted information.
Experimental Tests Conducted on ‘Tinker’ Trucks

Hybrid ‘Tinker’ Truck

SAE Hybrid Committee
Standards development for electrification of Powertrain and Accessories

HEV / Engine controls Integration

HV Power Distn.

eMotor Starter

Rear Axle Config/ Ratio

Direct Drive AMT w/ optimized shifting

Powertrain & Parasitics ‘Tinker’ Truck

Predictive Torque Mgt.
AccuSteer
Clutched Air Comp.
Electronic Air Control

Anti-Idle
eHVAC
Cooling Package

This presentation does not contain any proprietary, confidential, or otherwise restricted information
External Aerodynamics

30% drag reduction target exceeded in CFD and Scale Wind Tunnel Tests

Trailer Aerodynamics

- Run 1a
- Run 1b
- Run 2
- Run 5b
- Run 3a
- Run 3b
- Run 4a
- Run 4b
- Run 5a

Tractor – Basic Shape Analysis

- Notional 1
- Notional 3

CFD and Scale Wind Tunnel Testing
- Conducted steady state, closed grill simulation & testing
- Conducted transient, open grill simulation & testing
- Results correlate

Trailer Aerodynamics Test Results

ΔCd Measured
- 15% reduction
Thermal Management / Cooling

Cooling concept developed to meet add’l heat rejection while maintaining aero.

3D CFD Thermal Analysis

1D Thermal Analysis

SuperTruck Cooling Requirements

Analysis Study Complete
• WHR cooling circuit analysis
• Hybrid cooling circuit analysis
• Alternative layouts and packaging
• Cooling Performance analysis

Pressure Drop Analysis

Load Sweep Analysis

Full Load Analysis

This presentation does not contain any proprietary, confidential, or otherwise restricted information.
Lightweighting

Chassis analysis and tests to 4.5 – 5.8% FEI reduction, Cab analysis on-going

Cab Exterior
- Target floor, side/backwall, roof, hood systems
- Evaluate & test lightweight, low cost sandwich structures
 - Cores - foams, honeycomb
 - Faces – Al, FRP

Frame Rails
- Composite designed, installed & tested
- Low Cost Aluminum designed & installed

Next Steps
- Cross member development
- Complete Load-Optimized frame design in conjunction with lightweight suspension

Technical Accomplishments and Progress

<table>
<thead>
<tr>
<th>Mechanical Property</th>
<th>Symbol</th>
<th>Day Cab Reqs.</th>
<th>Sleeper Cab Reqs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical Bending Stiffness</td>
<td>(E_{lv})</td>
<td>Exceeds</td>
<td>Meets</td>
</tr>
<tr>
<td>Lateral Bending Stiffness</td>
<td>(E_{lz})</td>
<td>Falls Between</td>
<td>Falls Between</td>
</tr>
<tr>
<td>Torsional Stiffness</td>
<td>(G_{T})</td>
<td>Exceeds</td>
<td>Meets</td>
</tr>
</tbody>
</table>
Powertrain Drivetrain Integration

7.5% FEI measured with further tests scheduled

Engine Downspeeding

Modeling & Analysis
- Gear ratio Optimization on Transmission/Axle
- Shift strategy Optimization
- Gradeability / Startability

Testing
- Transmission/Axle Ratio Performance Q2, 2012

Tires/Wheels/Hubs

- Reduced Rolling Resistance
- Lightweight Wheels/Hubs
- Aero. Enhancements

Testing
- 1st Round of Testing Complete
- 2nd Round of Testing Q4, 2012

Axles

- Gear Oil Temperature Management
- Gear Oil Formulations
- Axle Configurations (traction enhanced 6x2)
Hybrid A-Sample

Analysis complete for sizing & performance, tests scheduled in Q3 2012

Modeling & Analysis
- Fuel Economy Estimation
- Component Sizing

(e.g. Battery SoC Analysis)

Digital Mockup

Cascadia HEV Component Location
A-Sample Hybrid Parts Layout

Hardware & Testing
- A-sample hardware installed
- Controls logic & EE integration (Hybrid + eHVAC)
- Functional testing on-going

Vehicle Testing
- eHVAC Q1, 2012
- Highway /City FE test scheduled Q3, 2012
Parasitic Losses

Testing & Analysis show up to combined 1.5% FEI potential

Power Steering
Closed Center Steering Gear
(constant pressure, variable flow)

Modeling & Analysis Complete
- Performance Estimate
- Component sizing, controls developed
- Hardware procured
- Installation and Test scheduled for Q2, 2012

Air System
Clutched Air Compressor + Electronic Air Dryer

Air System Testing Complete
- Significant reduction in purge cycles
- Lower average compressor power
Energy Management

Predictive Torque Management
Limits torque based on vehicle mass and road grade to limit excessive accelerations, via J1939 TSC1

Vehicle Testing Complete
• City Cycle route – up to 2.4% savings measured
• Customer Field Test: 5 tractors, 3 mo, >100,000 miles
• Driver Survey

Eco-Driver Feedback
Development Status
• A-Sample application complete, based on 4 criteria
• Fuel & Fleet Test Scheduled
• Customer field Test

Predictive Auxiliary Load Mgt.
Intelligently controls thermostatic valve, coolant pump & fan based on predictive engine load, and 3D Digital Maps.

Development Status
• 2 state coolant Pump successfully tested
• Controls developed, hardware installed & functionally tested
• Fuel Economy Test for thermostat & full variable pump scheduled for Q2, 2012
Energy Management Anti-Idling

Completed testing indicates program on track to meet 4% FEI targets

固体氧化物燃料电池测试
- SOFC空转燃料消耗期间的夜间
- 功率输出扫描
- SOFC最大功率输出时间
- 启动和关闭测量。

货车隔热测试
- 热浸
- 热转换
- 热成像
- 空气交换
- 保温/辐射屏障

混合动力和静止eHVAC
- 控制开发完成
- e-fan
- e-compressor
- 发动机启停

eHVAC测试计划在Q1, 2012结束
SuperTruck Partnerships and Collaborations

Department of Energy:
- Roland Gravel
- Gurpreet Singh
- Carl Maronde

Energy Management
- NREL
- DELPHI
- OSU
- Telogis

Hybrid
- FUSO
- MBtech
- Mercedes-Benz
- itk

Aero/Cooling
- ARC
- CD-adapco
- SILVER EAGLE
- MODINE

Lightweighting
- OSU
- TORAY
- TRUCK
- INMAGUSA

Powertrain/Parasitics
- DETROIT Engine
- MET
- Michelin
- Accuride
- Bendix
- Ashland

Fleet
- SCHNEIDER
- Walmart

This presentation does not contain any proprietary, confidential, or otherwise restricted information.
Vehicle Summary and Future Work

Successful completion of phase 1 & phase 2 targets on schedule

Technology Building blocks to 25% FEI measured

- Aerodynamics / Cooling
- Powertrain / Parasitics
- Anti-idling
- Lightweighting
- ...

Next Steps

- Continued System Level Testing
- Complete Full-Scale Cab Exterior Model for Aero
- Buildup of preliminary ST Chassis for System Integration
- Complete Integrated Tractor/Trailer Development for Lightweighting & Aero
Technical Backup Slides
Energy Management

Solar

Modeling & Analysis
- Freight Efficiency potential identified
- high-variability in performance

Vehicle Testing
- Scheduled Q2, 2012

Efficient Operations

Algorithm Development Complete
- Routing based on fuel consumption

Verification/Validation & Tests
- Simulation-Routing Verification work on-going
- Fleet Analysis, Q2 2012
Engine Summary and Future Work

- Engine has demonstrated 46.2% brake thermal efficiency
- Plans firmly in place for next level of performance improvement:
 - Higher compression ratio including new piston bowl and injector tip
 - Iterate SCR design for lower pressure drop
 - Reduced engine parasitics
 - Continue controls development and refinement
 - Waste heat regeneration development
 - Expander and generator
 - Add EGR waste heat recovery
 - Integrate onto vehicle