This presentation does not contain any proprietary, confidential, or otherwise restricted information.
Timeline
- Project Start: 10/1/09
- Project End: 9/30/13
- Percent Complete: 48%

Budget
- Total Project: $218,700,268
- DOE Share: $100,196,560
- Contractor: $118,503,708
- ORNL FWP: $6,800,000
- INL FWP: $7,803,440

Barriers
- Slow Deployment of Vehicles
- Permitting Requirements
- Utility Demand Charges

Partners
- Nissan North America
- General Motors
- 21 Cities
- 13 Electric Utilities
- 2 Universities
OBJECTIVES

- Establish mature charge infrastructures in diverse geographies
- Deploy grid-connected electric vehicles to utilize infrastructure
- Collect data characterizing infrastructure & vehicle utilization
- Evaluate means to improve infrastructure effectiveness
- Evaluate means to increase vehicle utilization
- Identify and resolve barriers to infrastructure deployment
- Develop models to support future infrastructure deployment
MILESTONES

- Project initiation 10/01/09 (complete)
- Complete 10-year plans 06/30/10 (complete)
- Complete EV Micro-Climates 08/30/10 (complete)
- Initial residential infrastructure 11/01/10 (complete)
- Initial vehicle deliveries 12/01/10 (complete)
- Initial commercial infrastructure 06/06/11 (complete)
- Initial DC fast charge infrastructure 10/24/11 (complete)
- Infrastructure deployments complete 12/31/12
- Data collection complete 09/30/13
INFRASTRUCTURE PLANNING

- Organize regional stakeholders
 - Government
 - Utilities
 - Employers

- Develop long-range Plan
 - Deployment area
 - Vehicle penetration
 - Infrastructure requirements

- Develop EV Micro-Climate
 - Support initial deployment
 - Provide deployment areas
INFRASTRUCTURE DEPLOYMENT

- Develop mature infrastructures
 - Install residential EVSE For Leaf & Volt Vehicles
 - Install level 2 commercial EVSE
 - Install DC fast charge in cities and on transportations routes

- Utilize Certified Contractor Network
 - Develop permitting and installation experience
 - Create jobs
DATA COLLECTION

- Collect vehicle data using vehicle telematics system
 - Vehicle Data Set On Key On/Key Off Event
 - Vehicle Identification Number
 - Time & Date
 - Location (GPS Coordinates)
 - Indicated Battery State-of-Charge
- Collect charge data using cellular/WiFi based network
 - Power and energy data using integral meter
 - Event data using network synchronized clock
- All data merged and stored at INL for analysis
SMART GRID INTEGRATION

- Charge control integration with electric utility
 - Demand reduction
 - Ancillary services
- Grid studies
 - Off peak price elasticity
 - Distribution transformer loading
PROJECT MANAGEMENT

- Project Staffing Complete (>100 new personnel)
- Project Offices Established (7 regional offices)
- Integration with Nissan & GM
 - Vehicle sales process
 - Vehicle telematics
- Certified Contractor Network operational (38 contractors)
- Infrastructure planning complete
- Cities added to deployment
 - CA – San Francisco & Los Angeles
 - TX – Dallas, Fort Worth & Houston
 - TN – entire state
HARDWARE DEPLOYMENT

- 4,424 Level 2 residential EVSE installed concurrent with vehicle sales as of 3/16/12
 - 4,033 Leaf
 - 391 Volt
- 1,349 Level 2 commercial EVSE installed as of 3/16/12
 - 558 sites
 - 782 additional units in progress
- 16 DC fast chargers installed as of 3/16/12
 - 32 additional units in progress
NETWORK IMPLEMENTATION

- Communications Network Established
 - WiFi residential network
 - M2M cellular commercial network
- Web portals established
 - Residential vehicle owner
 - Charger host
 - Electric utility
- Mobile application established
 - SMS notifications
 - Charger location mapping
DATA COLLECTION

- Vehicle data (12/31/11)
 - 13.7 million miles
 - 1.4 million trips
 - Distance between charges (Q4)
 - Volt 27.1 miles
 - Leaf 27.7 miles
DATA COLLECTION

- Charge data (12/31/11)
 - 370K charge events
 - 2.8 GWh consumed
BARRIER IDENTIFICATION

- AHJ inspector training
- ADA requirements
- Charge station signage
- Utility demand charges
- Residential metering
- Utility notification
- Cluster overloading
- Fast charge connector & communication standard
UL CERTIFICATION

- UL Joined EV Project As Partner
- UL Certification To New Standard 2594
 - Level 2 EVSE
 - DC Fast Charger
- Collaboration On Installer Standards
- Collaboration On Certification Issues
 - Plug-Connected EVSE
 - Meter Certification
SPECIAL EV RATES

- Collaboration With San Diego Gas & Electric
 - Test Four Different Time-of-Use Rates
 - Peak To Off Peak Ratios Vary From 2:1 To 6:1
- California Public Utilities Commission Approval
 - Implement With EV Project
 - Provide Rate Design Data For All California Utilities
- Validation of EVSE meter data
 - Both utility meter and EVSE meter data collected
 - Data compared to validate EVSE sub-meter
SOFT INFRASTRUCTURE

- AHJ Permit Process
 - Involvement in infrastructure planning
 - Training of inspector personnel
 - Early warning of install schedule
 - Ongoing development of permitting requirements

- Participation In CPUC regulatory process
 - Phase 1 OIR – are charge providers regulated
 - Phase 2 OIR – establishing policies to overcome barriers to EV deployment and complying with PUC Code 740.2
 - Rate design
 - Sub-metering
ADA REQUIREMENTS

- Coordinate Requirements With States
- ADA white paper issued
 - First EVSE Handicap Accessible
 - Van Accessibility Not Required
 - Building Accessibility Not Required
- Accommodating variant AHJ requirements
Future Work

EVSE ACCESS FEES

- Answer key questions regarding EV charging use patterns
- Comprehensively introduce fees for commercial EVSE
- Encourage the use of commercial EVSE
- Demonstrate value to charger hosts
- Evaluate business model sustainability
- Evaluate pricing model variants
- Keep it simple
DEMAND RESPONSE

- Utility Data Generation
 - Load Duration
 - Energy Use
 - EV Project Data
 - 10-Year Projections
- Demand Response
 - EVSE Control
 - User Transparency Evaluation
- GIS Based Data
 - Distribution Effects
 - Clustering

Weekday

Weekend
LESSONS LEARNED

- EV infrastructure planning
- Permitting
- EVSE installation cost
 - Residential
 - Commercial
- Use of commercial charging
- EVSE access pricing
- Utility regulatory issues
- EVSE theft & vandalism
- EVSE etiquette
- Smart versus dumb EVSE
SUMMARY

- EV Project hardware developed, certified, in production
- Infrastructure installation contractors onboard
- Vehicle and infrastructure deployment underway
- Data collection underway
- Barriers identified – many resolved
- Lessons learned developing
- Data analysis underway
LEAF

EV Project Nissan Leaf Vehicle Summary Report

Region: ALL
Number of Vehicles: 2346
Reporting period: October 2011 through December 2011

Vehicle Usage

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average daily range (mi)</td>
<td>73.2</td>
<td>Change in the Nissan Leaf's driving range</td>
</tr>
<tr>
<td>Total distance traveled (mi)</td>
<td>46,759</td>
<td>Distance covered by the Nissan Leaf</td>
</tr>
<tr>
<td>Average distance per day when the vehicle was driven</td>
<td>60.8</td>
<td>Distance covered per day</td>
</tr>
<tr>
<td>Average distance traveled per day (mi)</td>
<td>50.0</td>
<td>Distance covered per day</td>
</tr>
<tr>
<td>Average distance between charging events (mi)</td>
<td>4.8</td>
<td>Distance between charging events</td>
</tr>
<tr>
<td>Average number of charging events per day when the vehicle was driven</td>
<td>27.7</td>
<td>Number of charging events per day</td>
</tr>
</tbody>
</table>

Charging Location and Type

<table>
<thead>
<tr>
<th>Location and Type</th>
<th>Number of Charging Events</th>
<th>Percent of All Charging Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home</td>
<td>1,571</td>
<td>74%</td>
</tr>
<tr>
<td>Work</td>
<td>364</td>
<td>17%</td>
</tr>
<tr>
<td>Public</td>
<td>388</td>
<td>5%</td>
</tr>
</tbody>
</table>

VOLT

EV Project Chevrolet Volt Vehicle Summary Report

Region: ALL
Number of Vehicles: 45
Reporting period: October 2011 through December 2011

Vehicle Usage

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average daily range (mi)</td>
<td>73.2</td>
<td>Change in the Chevrolet Volt's driving range</td>
</tr>
<tr>
<td>Total distance traveled (mi)</td>
<td>156,115</td>
<td>Distance covered by the Chevrolet Volt</td>
</tr>
<tr>
<td>Average distance per day when the vehicle was driven</td>
<td>14.4</td>
<td>Distance covered per day</td>
</tr>
<tr>
<td>Average distance traveled per day (mi)</td>
<td>13.9</td>
<td>Distance covered per day</td>
</tr>
<tr>
<td>Average distance between charging events (mi)</td>
<td>10.3</td>
<td>Distance between charging events</td>
</tr>
<tr>
<td>Average number of charging events per day when the vehicle was driven</td>
<td>1.4</td>
<td>Number of charging events per day</td>
</tr>
</tbody>
</table>

Charging Location and Type

<table>
<thead>
<tr>
<th>Location and Type</th>
<th>Number of Charging Events</th>
<th>Percent of All Charging Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home</td>
<td>67%</td>
<td></td>
</tr>
<tr>
<td>Work</td>
<td>23%</td>
<td></td>
</tr>
<tr>
<td>Public</td>
<td>10%</td>
<td></td>
</tr>
</tbody>
</table>