Electric Drive Semiconductor Manufacturing (EDSM) Center

Don Morozowich
Powerex, Inc.
May 15, 2012

Project ARRAVT030
Timeline
- Project start date: 12 Mar 2010
- Project end date: 30 Sep 2012
- Percent complete: 90+%

Budget
- Total project funding
 - DOE share: $6,049,581.00
 - Powerex share: $2,592,678.00

Barriers
- Equipment integration
- Material handling
- Agility to meet variety of products and industry standards
- Transition from prototype to production
- Process control

Partners
- No partners in grant award
- Leveraging existing customer and supplier relationships
Project Overview

- Powerex corporate offices in Youngwood, PA (near Pittsburgh)
- 250+ employees
- 120,000 square feet of facilities
- Design and manufacture
 - Rectifiers and Thyristors
 - Custom Modules
 - Integrated Power Products
- Markets include: automotive/vehicle, transportation, wind, power generation & distribution, motor control, energy conservation
Objective:

Powerex will modify its existing facility to house an integrated Electric Drive Semiconductor Manufacturing (EDSM) Center capable of producing over 100,000 electric drive semiconductor devices annually.

- **EDSM Facility** - Provide a facility capable of meeting all EDSM project objectives
- **Manufacturing Center** - Provide capability to produce, at a minimum, 100,000 electric drive semiconductor devices annually
- **Reliability Center** - Provide the capability to fully test and qualify semiconductor device performance and reliability
- **Prototype Center** - Provide the capability to develop new semiconductor device concepts through prototyping. This capability will reduce risk associated with new semiconductor device performance and reduce risk associated with high-volume manufacturing of new devices.
Phased into existing facility

- Maintain continuity of current operations and reduce risk

Phases of implementation

- **Phase 1**
 - Construct 10,000 sq ft class 10,000 clean room
 - Install & integrate manufacturing center equipment and processes
- **Phase 2**
 - Relocate existing prototype equipment into clean room
- **Phase 3**
 - Install reliability center equipment in space vacated by prototype equipment move
- **Phase 4**
 - Demonstrate capability through Low Rate Initial Production

<table>
<thead>
<tr>
<th>MILESTONE</th>
<th>DATE</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clean room installation complete</td>
<td>Nov 2011</td>
<td>Complete</td>
</tr>
<tr>
<td>Manufacturing Center equipment installed</td>
<td>Nov 2012</td>
<td>Complete</td>
</tr>
<tr>
<td>Prototype Center equipment moved to clean room</td>
<td>Dec 2012</td>
<td>Complete</td>
</tr>
<tr>
<td>Low Volume production resumes in new clean room</td>
<td>Jan 2012</td>
<td>Complete</td>
</tr>
<tr>
<td>Reliability Center equipment installed</td>
<td>Jan 2012</td>
<td>Complete</td>
</tr>
<tr>
<td>Manufacturing Center process demonstrated</td>
<td>Jun 2012</td>
<td>Open</td>
</tr>
<tr>
<td>Reliability Center capability demonstrated</td>
<td>Jun 2012</td>
<td>Open</td>
</tr>
</tbody>
</table>
Approach – Project Scope

Modifications of existing Powerex facility
- 10,120 ft² (940 m²)
- 40% to 60% relative humidity control
- 22°C +/- 2°C temperature control
- Class 10,000 manufacturing areas

Manufacturing Center
- 6,070 ft² (565 m²)
- Capable of producing 100,000 units/year in 2015

Prototype Center
- 4,050 ft² (375 m²)
- Utilizing existing Powerex equipment

Reliability Center
- 4,300 ft² (400 m²)
- Capable of testing to automotive standards
Accomplishments – Manufacturing Center

- Finished Steel City room
 Nov 3, 2011

- Equipment moved in
 Nov 4, 2011

- Production moved to clean room
 Dec 19-30, 2011

- Production started
 Jan 4, 2012
Steel City
Clean Room Layout

Manufacturing Center in same room with Prototype Center.

This concept will allow us to better utilize all machines and cells.
Accomplishments – Manufacturing Center

First equipment moved to Powerex Cleanroom:
• Base plates de-stacker
• Solder mask printer
• UV curing oven
• Wire bonder
• Solder paste dispensers (2)
• Components pick & place (2)
Accomplishments – Manufacturing Center
100% acoustic microscope inspection after reflow soldering
Solder flux cleaners placed in clean room
Housing Assembly Cell
- Cleaner unloading
- RTV dispensing
- Housing placing
- Screws attachment
- Placing on the curing oven belt
Acceptance Testing

Integrated Cell

- 5 or 6 testers in individual racks
- Standardized (exchangeable) contacts fixtures installed by robot
- Tested devices placed on hotplates plus in and out contact fixtures by robot
- Testers controlled by PC
- Data automatically collected and stored
Reliability Center Objectives

• Equipment to perform 27 tests for automotive reliability including
 – Electrical testing
 – Environment testing
 – Lifetime testing
 – Mechanical testing

• Analytical equipment to troubleshoot and control processes
Accomplishments – Reliability Center

Acoustic Microscope
- Ultrasound imaging
- Solder void and lamentation analysis

Electron Microscope
- Micro imaging
- Micro Elemental Analysis (EDS)
Accomplishments – Reliability Center

- Single-Axis Vibration (Sinusoidal and Random)
- Burn-in (High Temp Reverse Bias, High Temp Gate Bias)
- Highly Accelerated Stress Testing (HAST)
- Intermittent Operating Life (IOL)
- Temperature Cycling
- Moisture Resistance
- Low Temp Storage
- Partial Discharge
- Wire Bond Pull
- Doe Shear
• No partners are directly involved in execution of grant

• Strong, collaborative partnerships with many critical material suppliers and service providers

• Long-standing relationships with many customers in electric drive industry

• Long-standing teaming arrangements with universities, federal agencies and companies engaged in state-of-the-art power module research
Future Work

In 2012

• Complete Manufacturing Center equipment integration and process demonstration

• Demonstrate full capability of Reliability Center

• Complete and close out project
Project Summary

• Grant awarded in March 2010

• Objective: create capacity to design through prototyping, produce and test 100,000 semiconductor power modules annually

• 2-year phased approach to permit risk reduction and implementation in existing plant without impacting on-going production operations

• Project is meeting all technical goals on schedule and within budget

• Clean room complete, equipment installed, working on final process demonstration