Inverter Using Current Source Topology

Gui-Jia Su
Oak Ridge National Laboratory
May 10, 2011

Project ID: APE002

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Overview

Timeline

• Start – FY10
• Finish – FY12
• 50% complete

Budget

• Total project funding
 – DOE share – 100%
• Funding for FY10
 – $816K
• Funding for FY11
 – $640K

Barriers

• Cost, weight, volume of the bus capacitor
 – Cost and weight, up to 23% of an inverter
 – Volume, up to 30% of an inverter
• Capacitor high temperature capability
• Undesirable characteristics of the VSI
• High system cost resulted from use of single-function modules

• Inverter targets (2015): $5/kW, 12 kW/kg, 12 kW/l

Partners

• ORNL team members: Lixin Tang, Cliff White, Mike Jenkins, John Hsu
• Michigan State University
• Fuji Electric Semiconductors
• Powerex
Objectives

• Develop novel ZCSI topologies that combine the benefits of ORNL’s Current Source Inverter (CSI) efforts and MSU’s work on Z Source Inverters (ZSI) to significantly reduce cost and volume through the integration of voltage boost, inverter, regen and PEV charging functions

• FY11 Objectives
 – Perform a simulation study on ways to reduce passive component requirements for ZCSIs
 • New voltage boost control methods
 • Impact of increasing switching frequency with wide bandgap switches
 – Assemble and test a 10 kW ZCSI setup using RB-IGBT to validate the simulation study
Milestones

<table>
<thead>
<tr>
<th>Month/Year</th>
<th>Milestone or Go/No-Go Decision</th>
</tr>
</thead>
</table>
| Sept-2010 | **Milestone**: Completion of simulation study on selected new ZCSI topologies.
Go/No-Go Decision: Determine from simulation results whether the ZCSIs can meet these goals: 1) a voltage boost capability of 3X, 2) a capability to charge the battery in both buck and boost mode during dynamic breaking, and 3) a reduction of motor voltage harmonic distortion of 90%. |
| Sept-2011 | **Milestone**: Completion of building and testing a 10 kW ZCSI
Go/No-Go Decision: Determine from test results whether the ZCSI can meet these goals: 1) an inherent voltage boost capability of 3X, 2) a capability to charge the battery in both buck and boost mode during dynamic breaking, and 3) a reduction of motor voltage harmonic distortion of 90%. |
Approach (1)

- The VSI
 - Require a bulky & expensive bus capacitor
 - Produce undesired output voltage waveforms that cause
 - High EMI noises
 - High stress on motor insulation
 - High-frequency losses
 - Bearing-leakage currents
 - Present a shoot-through failure mode that is a cause for long-term reliability concerns
 - Output voltage limited by battery voltage; a separate dc-dc converter is needed for voltage boosting

- ZCSI with a quasi-Z network:
 - Use a passive quasi-Z network of inductor, capacitor, and diode in the CSI to enable
 - Single stage buck & boost conversion
 - Battery charging
 - Safe operation in open circuit events
 - Eliminate antiparallel diodes with reverse-blocking IGBTs and GaN switches
 - Reduce total capacitance
 - Produce sinusoidal voltages & currents to the motor
 - Tolerant of phase-leg shoot-through and open circuit
 - Extend constant-power speed range without a separate boost converter
Approach (2)

- Eliminate antiparallel diodes with reverse-blocking IGBTs could shrink the footprint of power modules by 50 – 60%
CSI can be configured to operate as a charger in PEVs

- Charge battery from a single-phase source of 120V or 240V
- Charge battery from a three-phase source
- Charge batteries over a wide range of voltage levels due to CSI’s capability to buck and boost the output voltage
FY10 Technical Accomplishments (1)

- Confirmed by simulation the feasibility of using the ORNL CSI topology in series and power-split series/parallel HEV configurations
- The CSI dual-motor-drive (DMD) PE using RB-IGBTs provides significant performance improvements over the Camry PE
- Developed two new ZCSIs with a reduced component count and a higher voltage boost ratio (3 vs. 2 for the previous ZCSIs)
 - Current-fed Trans-ZSI (CF-trans-ZSI)
 - Current-fed Trans-quasi-ZSI (CF-trans-qZSI)
- Completed a design for a 55 kW ZCSI based on the CF-trans-qZSI
 - Using the first generation RB-IGBT technology
 - Power density: 16.6 kW/L
 - Specific power: 4.89 kW/kg
FY10 Technical Accomplishments (2)

- ORNL CSI dual-motor-drive (DMD) for HEVs/PHEVs using two motors
 - Share a single dc link inductor and battery interface circuit
 - Enable 3 operation modes: 1) both M/Gs in motoring, 2) both in regen, and 3) one in motoring and one in regen
 - Can produce even higher output voltages for the motor compared to a single CSI drive
FY10 Technical Accomplishments (3)

- Predicated performance improvements of the CSI DMD PE over the Camry PE

<table>
<thead>
<tr>
<th></th>
<th>Camry PE</th>
<th>CSI DMD PE with regular IGBT<sup>a,b</sup></th>
<th>CSI DMD PE with RB-IGBT<sup>a,b,c,d</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (kg)</td>
<td>3.57</td>
<td>0.36</td>
<td>0.36</td>
</tr>
<tr>
<td>Volume (L)</td>
<td>2.6</td>
<td>0.26</td>
<td>0.26</td>
</tr>
<tr>
<td>Cost ($)</td>
<td>$260</td>
<td>$26</td>
<td>$26</td>
</tr>
<tr>
<td>Side housing</td>
<td>1.2</td>
<td>1.20</td>
<td>1.20</td>
</tr>
<tr>
<td>Volume (L)</td>
<td>0.98</td>
<td>0.98</td>
<td>0.98</td>
</tr>
<tr>
<td>Cost ($)</td>
<td>$1,040</td>
<td>$1,040</td>
<td>$728</td>
</tr>
<tr>
<td>Power module</td>
<td>5</td>
<td>5.00</td>
<td>2.75</td>
</tr>
<tr>
<td>Volume (L)</td>
<td>4.3</td>
<td>4.30</td>
<td>2.37</td>
</tr>
<tr>
<td>Cost ($)</td>
<td>$1,040</td>
<td>$1,040</td>
<td>$325</td>
</tr>
<tr>
<td>Boost/V-I converter</td>
<td>6.6</td>
<td>6.60</td>
<td>6.60</td>
</tr>
<tr>
<td>Volume (L)</td>
<td>3.5</td>
<td>3.50</td>
<td>3.50</td>
</tr>
<tr>
<td>Cost ($)</td>
<td>$325</td>
<td>$325</td>
<td>$325</td>
</tr>
<tr>
<td>subtotal</td>
<td>16.37</td>
<td>13.16</td>
<td>10.91</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>1.20</td>
<td>2.75</td>
<td>2.75</td>
</tr>
<tr>
<td>Volume (L)</td>
<td>0.98</td>
<td>2.37</td>
<td>2.37</td>
</tr>
<tr>
<td>Cost ($)</td>
<td>$728</td>
<td>$325</td>
<td>$325</td>
</tr>
<tr>
<td>Reduction in kg, L & $</td>
<td>20%</td>
<td>21%</td>
<td>14%</td>
</tr>
<tr>
<td>Metrics</td>
<td>4.3</td>
<td>5.3</td>
<td>6.4</td>
</tr>
<tr>
<td>kW/kg</td>
<td>6.2</td>
<td>7.7</td>
<td>9.9</td>
</tr>
<tr>
<td>kW/L</td>
<td>23.2</td>
<td>19.9</td>
<td>15.4</td>
</tr>
<tr>
<td>$/kW</td>
<td>$260</td>
<td>$1,040</td>
<td>$728</td>
</tr>
<tr>
<td>Increase in kW/kg & kW/L</td>
<td>24%</td>
<td>26%</td>
<td>50%</td>
</tr>
<tr>
<td>Reduction in $/kW</td>
<td>14%</td>
<td>14%</td>
<td>14%</td>
</tr>
</tbody>
</table>

Assumptions:
a) 90% reduction of capacitance,
b) 20% of inverter cost from capacitor,
c) 30% reduction in diode cost of the inverter switch module,
d) 45% reduction in diode volume and weight of the inverter switch module,
e) no changes between the boost converter in the Camry PE and V-I converter in the CSI.
FY10 Technical Accomplishments (4)

- Original current-fed ZSIs topologies
 - The original current-fed ZSI
 - Current-fed qZSI

- New ZCSIs developed under this project
 - The newly developed current-fed Trans-ZSI and Trans-quasi-ZSI feature wider motoring operation range and reduced component count.
FY10 Technical Accomplishments (5)

- Comparison of voltage boost ratio vs. duty ratio D_A (simulation results)

Current-fed qZSI

New current-fed Trans-ZSI
FY10 Technical Accomplishments (7)

- Completed a design for a 55 kW CF-trans-qZSI for the following conditions:
 - Peak power rating: 55 kW
 - Battery voltage, V_{in}: 260 V
 - Output line-to-line voltage: 0~500 V
 - Switching frequency: 10 kHz
 - Coupled inductor turns ratio: 2

Power density: 16.6 kW/L
Specific power: 4.89 kW/kg

Camry: 7.4 kW/L, 4.6 kW/kg
2015 targets: 12 kW/L, 12 kW/kg
FY11 Technical Accomplishments (6)

- Simulation results of the CF Trans-qZSI with wider motoring operation range

Simulated waveforms in boost mode

Simulated waveforms in buck mode
FY11 Technical Accomplishments (8)

- Hardware design and fabrication for a 10 kW ZCSI setup
 - Use Fuji RB-IGBTs
 - Optimize design of coupled inductor with amorphous core

Water cooled heat sink: 12”x7”

- Z-network coupled inductor
- Output Capacitors
- Fuji RB-IGBT module: has 18 600V/200A switches; only six are needed
Collaborations

• Michigan State University – current-fed Z-source inverter (ZCSI) topologies

• Powerex – design and fabrication of custom IGBT modules for prototype development

• Fuji Electric Semiconductor – reverse blocking (RB) IGBT modules and RB-IGBTs developments

• ORNL, John Hsu - collaborating to eliminate the inductors
Future Work

• Remainder of FY11
 – Finalize hardware design for a 10 kW ZCSI
 – Complete DSP code development that implements the new boost control algorithm
 – Complete fabrication and test of the 10 kW ZCSI

• FY12
 – Design, fabricate, and test a 55 kW ZCSI prototype
Summary

- The ZCSIs offer opportunities to meet the 2015 inverter targets while providing additional capabilities of voltage boost and PEV charging function.

- ZCSIs using RB-IGBTs can substantially reduce power module cost, weight and volume by eliminating anti-parallel diodes.

- The ZCSIs possess desirable characteristics:
 - Sinusoidal voltages and currents to the motor.
 - Elimination of failure modes caused by open or short-circuit dc link.
 - Elimination of the uncontrolled PM regeneration failure mode.
 - Ripple-free battery currents.