Air-Cooled Condensers in Next-Generation Conversion Systems

Greg Mines
Idaho National Laboratory

May 18, 2010

Track: Specialized Materials and Fluids and Power Plants
Project Overview

• Timeline:
 – Start Date: October 2009
 – End Date: September 2011
 – ~15% Complete

• Budget:
 – FY2010: $375K
 – FY2011: $435K

• Barriers:
 The impact of air-cooling on plant performance and the costs of air-cooled condensers are barriers that will impact DOE’s goal to develop low-cost conversion systems that are more efficient for both EGS and low-temperature resources.

• Partners: None
Relevance/Impact of Research:

• The overlying objective is to reduce the costs associated with the generation of electrical power from air-cooled binary plants

• Premise for this work: No water is available for evaporative cooling

• Issues with Air-Cooling
 – Amount of heat rejected – up to ~90% of heat added is rejected
 – Cost - 30 to 45% of Capital Equipment Cost (EPRI Next Generation Geothermal Power Plant study)
 – Fan power - up to 10% of generator output
 – Sensitivity to temperature change: @150°C ~1.4% Δavailable energy per °C Δair temperature
Relevance/Impact of Research:

- Plant performance: function of source and sink temperatures, and conversion efficiency
- Conversion efficiency degrades with deviation from design temperatures
- Focus is on
 - Minimizing the effect of temperature changes on conversion efficiency
 - Increasing conversion efficiency by using mixed working fluids
Scientific/Technical Approach

- Assume no consumptive use of water
- Two resource scenarios (200° and 150°C); two representative locations (Grand Junction CO and Houston TX)

Design Conditions

- Design condition: maximum net power for each scenario — resource temperature, location and outlet temperature constraint
 - Fixed geothermal fluid flow rate
 - Working fluids: iC5, iC4, nC4, C3, R134a, R245fa
 - Incorporate realistic operating parameters (pinch points, efficiencies, ΔP’s)
- Evaluate benefit of technologies not used in conventional hydrothermal plants
- Estimate capital cost based on predicted equipment sizes
Scientific/Technical Approach - continued

Off-Design:

• Fix equipment sizes for selected design condition
• Include effect of flow and temperature changes on heat transfer coefficients, efficiencies, ΔP’s
• Account for effect of turbine on working fluid flow
• Identify conditions giving maximum power for different ambient and resource temperature conditions.
• Project power production over project life
• Evaluate the potential to decrease generation costs
 – Selection of design conditions for ambient and turbine
 – Other concepts (changing working fluids, allowing expansions inside two-phase region)
Scientific/Technical Approach - continued

Working Fluid Mixtures:

- Evaluate effect of composition and tube orientation on condensing film coefficient
 - Test data from Heat Cycle Research Facility
 - Tube orientations of 90° (vertical), 60°, and 15°
 - Isobutane and hexane mixtures (0 to 15% hexane)
 - Propane and isopentane mixtures (0 to 40% isopentane)

- Use data to refine predictive methods for condensing coefficients

- Integrate results into a condenser design model capable of evaluating the suitability of at least one commercially available design with these fluids

- Identify any potential issues with the design and provide recommendations
Scientific/Technical Approach - continued

Milestones:

- Sep 10 Complete Task 1 – Analysis of impact resource decline and ambient temperatures on air-cooled binary plant output, and the potential to mitigate those impacts with existing technologies
- Feb 11 Complete evaluation of effect of mixture composition and tube orientation on condensing film coefficients
- Sep 11 Complete Task 2 – Assessment of the suitability of existing condenser designs for mixed working fluids

Decision Points:

- The methodology used to evaluate existing condenser designs – February 2011
- Selection of the commercial design to be evaluated (will be largely dictated by the data from the prior testing) – March 2011

Status:

- Designs have been established for both resource conditions at both locations, and the benefits from a design using recuperation identified
- Fixed plant design models will be completed in early May
Accomplishments, Expected Outcomes and Progress

- Design conditions determined for both resource temperatures at each location (design at mean annual air temperature)
- Benefit of recuperation evaluated for each scenario
 - Positive impact on power only if constraint on outlet temperature
 - No benefit at lower resource temperature
- Model is being modified to fix equipment and reflect impact of varying flow rates and temperature on heat transfer, efficiencies and Δpressure

<table>
<thead>
<tr>
<th>Location</th>
<th>T_{gf}</th>
<th>Design with no outlet constraint</th>
<th>Design with outlet constraint</th>
<th>Design with Recuperation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grand Junction</td>
<td>200°C</td>
<td>87.2 kW-s/kg</td>
<td>76.6 kW-s/kg</td>
<td>81.8 kW-s/kg</td>
</tr>
<tr>
<td></td>
<td>150°C</td>
<td>41.5 kW-s/kg</td>
<td>41.5 kW-s/kg</td>
<td>40.5 kW-s/kg</td>
</tr>
<tr>
<td>Houston</td>
<td>200°C</td>
<td>76.0 kW-s/kg</td>
<td>70.3 kW-s/kg</td>
<td>73.2 kW-s/kg</td>
</tr>
<tr>
<td></td>
<td>150°C</td>
<td>32.8 kW-s/kg</td>
<td>32.8 kW-s/kg</td>
<td>32.4 kW-s/kg</td>
</tr>
</tbody>
</table>
Accomplishments, Expected Outcomes and Progress

Mixed Working Fluids

- Non-isothermal boiling and condensing allow heat transfer irreversibility to be reduced
- Prior work by Demuth and Whitbeck
 - +20% increase in plant performance
 - Cost benefit if well field development costs equivalent to or greater than plant cost
- Vaporization of mixtures
 - Replicate benefit with pure fluid in supercritical cycles
- Condensation of mixtures
 - Can not replicate with pure fluids
 - Prior work successful – in-tube condensation, non-horizontal tube orientation, water cooled condensers

Can benefits be achieved in air-cooled condensers?
Project Management/Coordination

- With determination that final year of funding would not be provided, project work scope and schedule were revised to focus on binary conversion systems.

- Activity has been planned to maximize use of existing resources:
 - Previously developed model of binary plants
 - Software platforms (Aspen) available at the INL
 - Prior work on the evaluation of binary turbine performance
 - Test data from the Heat Cycle Research Facility (mixed working fluids)

- Work has been planned to facilitate ‘learning curve’ of staff having no prior geothermal experience.

- Cost and schedule are monitored and reported internally on a monthly basis.
Project Management/Coordination

Air-Cooled Condensers in Next Generation Conversion Systems

<table>
<thead>
<tr>
<th>ID</th>
<th>Task Name</th>
<th>Start</th>
<th>Finish</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AIR-COOLED BINARY CYCLE</td>
<td>10/1/2009</td>
<td>9/30/2010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1. Identify concepts, scenarios, configure binary plant model</td>
<td>10/1/2009</td>
<td>3/1/2010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2. Determine performance benefits</td>
<td>1/15/2010</td>
<td>7/15/2010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4. Solicit industry comment</td>
<td>6/1/2010</td>
<td>7/30/2010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>AIR-COOLING WITH MIXED WF's</td>
<td>8/2/2010</td>
<td>9/30/2011</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1. Use prior work to establish impact of mixtures on condensing coefficients</td>
<td>8/2/2010</td>
<td>2/1/2011</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2. Evaluate suitability of selected Air-Cooled Condenser design for mixtures</td>
<td>2/2/2011</td>
<td>7/1/2011</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3. Identify design deficiencies and changes needed</td>
<td>6/1/2011</td>
<td>8/15/2011</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Spend Plan for Air Cooled Condenser Task

- **Spend Plan**
- **Actual**

<table>
<thead>
<tr>
<th>Year</th>
<th>$0</th>
<th>$100,000</th>
<th>$200,000</th>
<th>$300,000</th>
<th>$400,000</th>
<th>$500,000</th>
<th>$600,000</th>
<th>$700,000</th>
<th>$800,000</th>
<th>$900,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oct-09</td>
<td></td>
</tr>
<tr>
<td>Feb-10</td>
<td></td>
</tr>
<tr>
<td>Jun-10</td>
<td></td>
</tr>
<tr>
<td>Oct-10</td>
<td></td>
</tr>
<tr>
<td>Feb-11</td>
<td></td>
</tr>
<tr>
<td>Jun-11</td>
<td></td>
</tr>
<tr>
<td>Oct-11</td>
<td></td>
</tr>
</tbody>
</table>
Future Direction

Remainder of FY2010

• Complete modeling of the effect of varying ambient temperatures and declining resource on binary plant output.
• Assess the selection of the design conditions for both the ambient temperature and turbine
• Identify concepts/technologies with the potential to lower generation costs
• Document findings
• Initiate work to examine condenser data from Heat Cycle Research Facility
Future Direction

FY2011

- Determine effect of mixture composition and tube orientation on condensing film coefficients during testing at the Heat Cycle Research Facility
- Use these results to evaluate predictive methods
- Incorporate best predictive method(s) into model to evaluate existing condenser designs
- Select most promising design and assess suitability for use with mixtures
- Document findings
Summary

- The heat source and sink temperatures define the maximum power a cycle can produce.
- This work seeks to minimize the impact of variations in the source and sink temperature on the performance of a plant once it has been constructed.
- Benefits of technologies that are applied to mitigate effects of off-design operation will be dependent upon the scenario evaluated.
- Working fluid mixtures
 - Increase performance and plant cost.
 - Reduce contribution of well field and reservoir to generation cost – lower generation cost if non-plant costs are significant.
 - Questions whether non-isothermal condensation can proceed in commercial condenser designs.