Fluid Imaging of Enhanced Geothermal Systems

Gregory Newman & Ernie Major
Lawrence Berkeley Laboratory

May 18 2010

This presentation does not contain any proprietary confidential, or otherwise restricted information.
Fluid Imaging of Enhanced Geothermal Systems

- Project Timeline
 - Project start date, October FY10
 - Project end date, September FY11
 - Percent complete 25%

- Budget
 - Total project funding, DOE Award $1,025,000

- Barriers
 - Monitor reservoir creation
 - Flow rates
 - Enhance EGS reservoir productivity

- Collaborators
 - Univ. Utah Energy and Geosciences Institute
EGS FLUID IMAGING

• Manipulation of EGS fluids
 - Use geophysical imaging
 - MEQ and electrical resistivity imaging (MT & CSEM)
 - established geophysical technologies; long history in geothermal exploration
 - Map changes in volume and location of fluid bearing fractures
 - predict locations, movements and concentrations
 - Ultimate Goal: Manage injection strategies
 - step out wells (number and location)
 - ratio of production to injection
EGS FLUID IMAGING

• Small fractures control the permeability over a large area
 ➢ High resolution imaging of fractures needed to map EGS fluids

• Permeability likely to be transient on reservoir scale
 ➢ Fractures open and close due to EGS stimulation, mineral precipitation/solution
 ➢ Need to image stimulation zones, before, during and after fluid injection

• Reservoir parameters do not give unique signals
 ➢ Zones of low resistivity can be either water saturated or have high clay content
 ➢ Micro seismicity may be associated with fluid saturation changes or stress drops
 ➢ To reduce ambiguities employ joint geophysical imaging/modeling methodologies
Micro earthquake (MEQ) focal points: blue circles
Well production intervals: black linear segments
Well injection intervals: red linear segments

COUPLING MEQ & MT
Coso Geothermal Reservoir

Observations:
Production Intervals associated with seismicity
Resistivity not detailed enough to map fractures
Implications for EGS

Needs:
Better Understanding MEQ focal mechanisms
Enhanced Images Resolution for Fluids & Fractures
- time lapse MT/CSEM for fluid imaging
- joint CSEM-MT/seismic imaging
- use MEQ focal information with EM Imaging
Scientific/Technical Approach

TIME-LAPSE FLUID IMAGING – Desert Peak (MT & CSEM)

Conductive fluid

Resistive fluid
Scientific/Technical Approach

Velocity & Resistivity Imaging
Possibility & Potential

Vp/Vs Ratio Map
500 m below sea level

Conductivity Map
500 m below sea level

Fluid Filled Fracture Network?

Coso Geothermal Reservoir
Clear correlations observed
Images independently derived
Joint imaging better approach
Scientific/Technical Approach

- **USE 3D MEQ, MT and CSEM Imaging Approaches**
 - Employ MEQ tomographic imaging & hypocenter event location
 - standard & double difference (hypoDD) approaches
 - 3D MT/CSEM Resistivity Imaging Algorithms
 - full wave equation approach, finite difference approximations, adjoint state methods, gradient decent methods
 - use in time lapse mode
 - Joint resistivity and velocity imaging
 - use structural constraint => velocity and resistivity images
 - seek similar spatial patterns
 - Focused EGS Imaging
 - Use hypocenter clusters to focus resistivity/velocity imaging zone
Scientific/Technical Approach

- **Technical Feasibility**
 - Established track record in applying imaging technologies
 - geothermal exploration
 - oil & gas for fluid identification

3D CSEM Imaging
Compos Basin
Offshore Brazil

A: known oil field
B: possible HC trap
C: brine
Scientific/Technical Approach

- **Planned Milestones in FY10**
 - Identify EGS Site (Raft River, Idaho)
 - Carry out model studies at the Raft River EGS site
 - Implement Joint Velocity-Resistivity Imaging Approach
 - common structure constraint (cross gradients)
 - Instrument Raft River MEQ Network (8 Stations) in Late Spring
 - Image MT/MEQ Data to Characterize Regional Geology
 - collaborative effort with Univ. Utah Energy and Geoscience Institute
 - Begin Time Lapse EM Data Acquisition in Summer 2010
 - collect baseline EM data over EGS injection well RRG-9
Scientific/Technical Approach

Raft River EGS Site

Well RRG-9

Regional MT Survey Site Spacing
~ ½ km

PROPOSED CSEM/MT TRANSECTS TIME LAPSE IMAGING

stimulaiton zone
~ 1.6 km depth
Technical Accomplishments to Date:

Seismic Component

- developed program to create synthetic seismic data sets
- testing for resolution and accuracy of MEQ imaging methods
- literature search on MEQ methods for inversion, cross-gradient, ray tracers, resolution and accuracy
- modifying SimulPS code for joint attenuation and MEQ inversion with cross-gradient constraint
- preparing new visualization capability (VisIT)
- create synthetic 3D velocity models of any chosen dimensions
- calculate synthetic arrival times for earthquake locations with specified noise
- preparing publication on resolution and accuracy
Accomplishments, Expected Outcomes and Progress

Technical Accomplishments to Date:

EM Component

- Joint MT/CSEM Imaging codes operational and tested
- Time lapse –focused- imaging successfully demonstrated on EGS test models
- Implementation structural constraint for joint seismic and EM imaging

EGS Field Site Recently Identified

- Raft River, Idaho
- Stimulation to begin in Fall 2010
- Planned injection - 1 Million gallons of water

Project Participants and Collaborators:

- G. Newman, E. Majer, L. Hutchings & M. Commer (LBL)
- J. Moore and P. Wannamaker Collaborators U. Utah Energy & Geoscience Institute
Summary of Project Management Plans & Schedule:

- Algorithm Developments and Model Studies
 - To be completed by fall 2010

- Raft River
 - 3D MT Imaging of the Raft River Site to characterize background geology
 MT data acquisition now underway - Spring & Summer 2010
 - Installation of MEQ network Spring 2010
 - Coordinate time lapse imaging experiments with stimulation schedule – Fall 2010
 - Contractor to acquire baseline EM data over well RRG 9 – Summer 2010
 - Analyze first set of time lapse data in Summer & Fall 2010
 - Acquire second set of data after RRG 9 stimulation & injection during FY11
 - Carry out time lapse imaging of the RRG 9 data sets in FY11
 - Project ends in Fall 2011

- Anticipated Results
 - Map of the stimulated fluids and fractures

- Documentation of Results
 - Meeting Presentations & Technical Publications
 - All Data Will be Uploaded to the National Geothermal Data System
• Attempting to Image EGS Fracture & Fluid Networks
• Employing joint Geophysical Imaging Technologies
 – needed to reduce image ambiguity
• Using Time Lapse and focused Imaging
 – necessary to enhance detection of fluid-fracture network
• Test Technical Concepts at Raft River EGS Site
 – Planned fluid and stimulation injection this fall
• Project is collaborative