Detection and Characterization of Natural and Induced Fractures for the Development of Enhanced Geothermal Systems

M. Nafi Toksoz
Massachusetts Institute of Technology
GO18190

May 18, 2010

This presentation does not contain any proprietary confidential, or otherwise restricted information.
Overview

- **Timeline**
 - 10/1/2008-9/30/2011
 - Up to date, ~50% of project completed

- **Budget**
 - Total project funding: $1,279,969
 - DOE share: $1,019,769; Awardee share: $260,000
 - Funding received in FY09 (10/1/08 to 9/30/09)
 - DOE share: $229,204; Awardee share: $76,694 (25.07%)
 - Funding for FY10 (10/1/09 to 9/30/10)
 - DOE share: $484,832; Awardee share: $105,200

- **Barriers**
 - **Site characterization**: Development of advanced geophysical methods for determining EGS reservoir properties and resource assessment.
 - **Reservoir validation**: Detection and imaging of natural and induced fractures for successful EGS development

- **Partners**: ENEL/North America and New England Research, Inc.
Project Objectives

- Combine geophysical methods for reservoir and fracture characterization with rock physics measurements made under in-situ conditions (up to 350° C) for development of geothermal systems

- Apply the model to the Cove Fort-Sulphurdale geothermal field in Utah

- Generalize reservoir characterization model for application to other EGS sites
Scientific/Technical Approach

- **Determination of Reservoir Geometry and Properties using:**
 - Seismic Velocity Tomography
 - Seismic Attenuation Tomography
 - Magnetotelluric Imaging
 - Reservoir Geoproperties from Combined Geophysical Datasets

- **Fracture Detection and Characterization**
 - Use Microearthquakes for Fracture Detection, Mapping
 - Fracture Imaging Using Generalized Radon Transform
 - Characterization of In-situ Stress and Fracture Properties for Reservoir Modeling and Simulation

- **Laboratory Measurements on Cores at Reservoir Conditions**

- **Joint Interpretation of Laboratory and Field Data for a Detailed Model of the Prospect (Cove Fort)**
1. Collected geological and geophysical data (heat flow, gravity, seismic, and MT) for the geothermal site

2. Generated the subsurface tomographic images for the geothermal site (Vp, Vs, resistivity)

3. Designed apparatus for high temperature/high pressure petrophysical measurements

4. Developed advanced methods for fracture and microseismic event characterization using full waveforms

5. Planned the local seismic network to be installed in 2010

These results helped better characterize the subsurface structure, shape, geophysical properties and temperature of the “body” suitable for EGS and for further development of Cove Fort.
1. Collected Geological and Geophysical Data

Heat Flow Data
Data: SMU

Gravity Data
Data: UT El Paso

Legend
- **Cove Fort**
- **Well Locations**

Heat Flow
milliwatts/m²

Filled Contours
- 1 - 59
- 59 - 74
- 74 - 94
- 94 - 142
- 142 - 263
- 263 and above

High heat flow and negative Bouguer gravity anomaly around the site.
1. Collected Geological and Geophysical Data (cont’d)

Seismic Data

Seismic raypaths used for tomography

- Events
- Stations
- Cove Fort

(data from Univ. of Utah and IRIS)
2. Generated subsurface tomographic images

Seismic surface wave phase velocity maps (from Univ. of Colorado)

Shear velocities from surface wave inversion

Low velocity anomalies are present beneath the Cove Fort geothermal site.
2. Generated subsurface tomographic images (cont’d)

Vp (body wave) model from double-difference seismic tomography
At depths between ~5 to ~15 km beneath Cove Fort, there exists a low velocity anomaly, indicating high temperature.
Accomplishments, Expected Outcomes and Progress

3. Developed apparatus for high P,T petrophysical measurements

\[T_{\text{max}} = 350^\circ \text{C} \]

Lateral stress from confining liquid/gas

\[\sigma_{\text{axial}} = P_{\text{confining}} \]

Configuration:

- Velocity
- Fracture Conductivity
- Fracture healing
- Fracture stiffness
Accomplishments, Expected Outcomes and Progress

4. Developed methods for microseismic source mechanisms and fracture characterization

Determine stress regime and fracturing mechanism from microseismic waveform analysis

Moment magnitude: -2.9
Stress drop: 52 Kpa
Isotropic component: -26%
Deviatoric component: 74%
(Strike, dip, rake) = (102, 90, 61) Degrees

Song et al. (2010)
A new method is developed to match high frequency waveforms to determine focal mechanisms of small earthquakes in the case of a sparse station network.

Focal mechanisms give the information on stress regime.

Li et al. (2010), submitted to GJI.
Accomplishments, Expected Outcomes and Progress

5. Planned local seismic network deployment

MT Network

Seismic Network

Legend
- Current Production Well
- MT Stations
- Proposed Seismic Stations
- Elevation Contours (500ft)
- Roads
Project Management/Coordination

- MIT (Cambridge, MA) leading coordination efforts between partners ENEL/NA (Reno, NV and Cove Fort, UT) and NER (White River Junction, VT).

- Communication between MIT, ENEL and NER
 - Regularly scheduled meetings between all partners
 - Special meetings for key field activities
 - Email and phone contact

- Collection of materials for quarterly and annual reports
Project Management/Coordination

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
</tr>
<tr>
<td>I. 3D structure & bulk properties</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gather seismic data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generate database</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seismic Tomography</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attenuation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anisotropy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design and deploy seismic network</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II. Fracture detection and imaging</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQ location, microseismic monitoring</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fracture imaging</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III. Joint Inversion & synthesis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Joint Inversion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Synthesis of Data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other sites</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV. Lab Measurements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual and Quarterly Reports</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
</tr>
<tr>
<td>Annual Meetings</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Future plans

• Install new seismic stations at Cove Fort for high-density network (Summer 2010)
• Analyze microearthquake data for fracture mapping
 – High-resolution seismic velocity /attenuation tomography
 – Focal mechanisms and in-situ stress regime
 – Fault/fracture imaging
 – Anisotropy and preferred fracture orientation
• Detailed geologic model for surface to 10km depth from joint gravity, seismic and MT inversion
• Petrophysical measurements of core samples
• Synthesize geophysical model and laboratory measurements for defining the resource base at Cove Fort
• Generalize model for application to other potential EGS reservoirs
Summary

- Generated tomographic images of the structure under Cove Fort, delineated a “hot body” and regions for potential expansion of the geothermal field
- Developed methods for fracture mapping and characterization using microseismic events
- Designed and manufactured laboratory system for testing reservoir cores under in-situ conditions up to 350°C
- With the addition of new microseismic data, we will perform a joint inversion of seismic, gravity, EM and petrophysical laboratory data to generate a high resolution model of the reservoir, its resource potential and targets for expansion.
- The analysis methods developed for Cove Fort are applicable to other sites
Supplemental Slides
Papers and presentations related to this project

• Papers

• Abstracts
 – Toksoz, M.N., H. Zhang, T. Benson, and A. Rael (2010), Geothermal resources exploration and assessment around the Cove Fort-Sulphurdale geothermal field in Utah by multiple geophysical imaging, GRC annual meeting, October 24-27, 2010, Sacramento, CA