

Component Technologies R&D:

Energy Efficiency & Renewable Energy

Time-lapse Joint Inversion of Geophysical Data and its Applications to Geothermal Prospecting - GEODE Project Officer: Mark Ziegenbein Total Project Funding: \$635,000

Andre Revil and Mike Batzle (Colorado School of Mines) Ezra Zemach (ORMAT)

Principal Investigators:

April 22, 2013 **DE-EE0005513**

This presentation does not contain any proprietary confidential, or otherwise restricted information.

Objectives of the project

- Forward modeling geophysical response with fluid flow/heat modeling
- Joint inversion (stochastic/deterministic) for ground water flow imaging
- Combined passive and active geophysical methods /new methods
- Technical feasibility at Jersey Valley geothermal field (Nevada)

Impact on costs

- Decrease of the costs of drilling through better characterization targets
- Better management of existing fields through time lapse geophysics
- Methodologies can be easily transferred to other DOE test sites
- ORMAT can use the new approaches for both production and site management

Scientific/Technical Approach

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Geophysics

(1) Joint inversion(2) Time-lapse(3) Seismic+EM

Petrophysics

(1) Seismic properties(2) Resistivity (*m* and *n*)

(3) Effet of saturation

Geology and texture

(1) Sedimentology(2) Tectonics (faults)

Reservoir Modeling (1) Multiphase flow (2) Multiscale porous media

Energy Efficiency & Renewable Energy

Original Planned Milestone/ Technical Accomplishment	Actual Milestone/Technical Accomplishment	Date Completed
Task 1 Assemble & Assess Data	Milestone 1 Previous data compiled	01/01/2013
Task 2 Joint Inversion Model (CSM)	Milestone 2: Meetings (ORMAT/CSM) Milestone 3 Codes released	01/01/2013 01/01/2013
Task 3 : Database (ORMAT and CSM)	Milestone 4: Measurements complete	01/01/2013
Task 5 Testing EM system	Milestone 6: Acquisition plans	In progress
Task 6 Acquisition Planning		01/01/2013

Decision Point: Go - No go" Decision of field acquisition (January 2013)

Publications: 8 publications in the peer-reviewed literature

4 | US DOE Geothermal Office

Publications (Phase 1 of the project)

ENERGY Energy Efficiency & Renewable Energy

Karaoulis M., A. Revil, A., J. Zhang, and D.D. Werkema, Time-lapse cross-gradient joint inversion of cross-well DC resistivity and seismic data: A numerical investigation, Geophysics, 77(4), D141–D157, 2012.

Karaoulis M., A. Revil, D.D., Werkema, P. Tsourlos, , and B.J. Minsley, IP4DI SOFTWARE: A 2D/3D time lapse tomographic algorithm for DC resistivity, induced polarization, and frequency-domain induced polarization data, Computers and Geosciences, 2012.

Revil A., A. Jardani, J. Hoopes, M. Karaoulis, C. Colwell, **M. Batzle**, A. Lamb, and K. van Wijk, Non-intrusive estimate of the flow rate of thermal water along tectonic faults in geothermal fields using the self-potential method, FastTIMES, 16(4), 2011.

Karaoulis M., **A. Revil**, Minsley B., M. Todesco, <u>J. Zhang</u>, and D.D.Werkema, 4D Time-lapse gravity inversion, submitted to Geophysical Journal International.

MacLennan, K., **M. Karaoulis**, and **A. Revil**, Complex conductivity tomography using low-frequency cross-well electromagnetic data, submitted to Geophysics, 2012.

Byrdina S., D. Ramos, J. Vandemeulebrouck, P. Masias, **A. Revil**, A. Finizola, K. Gonzales Zuniga, V. Cruz, Y. Antayhua, and O. Macedo, Influence of the regional topography on the remote emplacement of hydrothermal systems with examples of Tiscani and Ubinas volcanoes, Southern Peru, Earth and Planetary Research, 2013.

Soueid Ahmed, A., A. Jardani, **A. Revil**, and J.P. Dupont, SP2DINV: A 2D forward and inverse code for self-potential problems, submitted to Computers & Geosciences, 2012.

Zhou J., **A. Revil**, **M. Karaoulis**, D. Hale, and J. Doetsch, Image-guided Inversion of Electrical Resistivity Data, submitted to Geophysical Journal International.

^{6 |} US DOE Geothermal Office

Image guided inversion (Task 2)

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

^{7 |} US DOE Geothermal Office

Time lapse gravity inversion

Karaoulis M., A. Revil, Minsley B., M. Todesco, <u>J. Zhang</u>, and D.D.Werkema, 4D Time-lapse gravity inversion, submitted to Geophysical Journal International.

1) Forward modeling (TOUGH)

True density distribution

(use of an active time constraint)

Next step: fully coupled inversion

2D+time inversion

8 | US DOE Geothermal Office

Example of test of the joint inversion Localization of coal burning front (Task 2)

Coupled Inversion (Task 2)

ENERGY Energy Efficiency & Renewable Energy

Wang, J., A. Revil, M. Karaoulis et al, in preparation for Geophysics

Application to Stromboli (Task 1)

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Preparation of a paper for Nature Geosciences

\mathcal{O}

Database GIS (Tasks 3)

Energy Efficiency & Renewable Energy

1) Resistivity survey (IP) Gavity, Mag

- 2) Radon-thoron soil
- 3) Water chemistry
- 4) Geological mapping
- 5) Gravity survey
- 6) 3 slim-holes data
- 7) 9 full-sized wells
- 8) Well-testing (flow/injection)
- 9) Conceptual reservoir modeling
- 10) Tracers test
- 11) Leapfrog 3D structural model
- 12) GIS database

the shehr

12 | US DOE Geothermal Office

Application to Jersey Valley (Tasks 4 and 5)

Energy Efficiency & Renewable Energy

Future Directions (year 2)

Milestone or Go/No-Go	Status & Expected Completion Date			
Task 6 permitting	9/1/2012 Done			
Milestone 7 – Permits obtained	1/1/2012 Done			
Phase IIApplication to Jersey Valley Commercialization				
Task 1 Build Jersey Valley numerical model Milestone 8 Initial joint inversion model	10/01/2013 In progress			
Task 2 Collect geophysical data Milestone 9 Data reduction/inversion	03/01/2013 In progress 06/01/2013 In progress			
Task 3 Joint inversion data Jersey Valley Task 4 Interpret results with geologic info Task 5 Lapse lapse acquisition	06/01/2013Not done08/01/2013Not done08/01/2013Not done			
Go no-go on time lapse acquisition	09/01/2013 Not done			

Summary

- Forward modeling geophysical response exploration
- New joint inversion algorithms for exploration
- New fully coupled inversion algorithms for monitoring
- Forward modeling for reservoir temperature monitoring
- Test of the inversion at Stromboli
- Acquisitions at Jersey Valley (Nevada)
- New acquisitions Upper Arkansas Valley (CO)
- Field camp at Pagosa Springs (CO)
- New method of time lapse geophysics
- New method to monitor fracking

Project Management

ENERGY Energy Efficiency & Renewable Energy

Phase II

181,522

Timeline:	Planned Cline: Start Date		Planned End Date		Actual Start Date		Current End Date	
	1/1/2012	2		12/31/2012	1/1/2012	2	1	2/31/2012
Budget:	Federal Share	Cost Sł	hare	Planned Expenses to Date	Actual Expenses to Date	Valu Work Co to D	e of mpleted ate	Funding needed to Complete Work
	255,586	21,00 ORM/	00 AT		220,447 +21,000			

Timeline: 9/30/2011 to 12/31/2014

24,000 CSM

- Budget
 - Phase 1 (9/30/2011 to 12/31/2012)
 \$255,586

+24,000

- Project total cost(9/30/2008 to 2/28/2012) \$635,000
- Partner ORMAT Technologies Inc. Cost Sharing : \$151,000

Phase 1	\$21,000
Phase 2	\$85,000
Phase 3	\$45,000