Flathead Electric Cooperative
Facility Geothermal Heat Pump System Upgrade
May 19, 2010
Project Timeline

• Feasibility Study & Design - February 1, 2010
• Permit Acquisitions - May 10, 2010
• Construction Start - May 17, 2010
• Construction End - August 31, 2010
• Data Acquisition & Dissemination to DOE - September 1, 2010 – September 2012

Project Budget

• Total Budget - $319,600
• DOE Share - $155,270
• Cost Share - $164,330
 • FEC - $116,330
 • Bonneville Power Administration - $48,000
• FY09 - $0
• FY10 - $155,270

Barriers

• Water Rights Authorities
 • Water Rights Application complicated, involved, & time intense (180 Days to Review)

Partners

• Jackola Engineering & Architecture
 • Extensive Ground Source Heat Pump System Design Experience
Relevance/Impact of Project

- **Project Will Take Advantage of Abundant Water in Shallow Aquifer**
 - 15’ Static Water Level
 - Low Pumping Power
 - Reduced Installation Costs
 - Good Quality Water

- **Demonstrate Low Temperature GSHP System Design**
 - Modular heat pumps with variable water temperature output (90° F - 140° F)
 - Maximum System Efficiency, 5.0+ COPs
 - Extreme climate conditions, i.e. outdoor design temp of -19° F
 - System to serve radiant floors, hydronic unit heaters, and outdoor ventilation air tempering

- **Provides a Baseline for Local Industrial Geothermal Project Costs and Benefits**
 - As a utility company, Flathead Electric Cooperative is uniquely positioned to provide marketing of ground source heat pump systems
 - $ Incentives to GSHP customers
 - Real-time public display of energy saved and emissions avoided
 - GSHP technical support
 - Energy data analysis
Technical Approach

• (4) 20 Ton Heat Pump Modules = 1,000,000 Btuh of Heating Only

• Ground Water Source – Open Loop Design
 • 15’ Static Water Level
 • Clean & Viable Ground Water
 • VFD Submersible Well Pump

• Low Temperature Applications
 • Variable Flow, Modular Heat Pump System w/Variable Temperature Output Up to 140° F
 • Radiant Floors
 • Unit Heaters Capable of Heat Delivery w/Low Water Temperature Source (90° -140°)
 • Heat Recovery Ventilators Water Coils Capable of Heat Delivery w/Low Water Temperature Source (90° -140°)

• Outdoor Reset Control: Heat Delivered = Heat Lost
 • Controls Supply Water Temperature Based on Outdoor Air Temperature
 • Maximizes Heat Pump COP’s
 • Minimal Equipment Cycling

• Completes Facility Wide HVAC Transition to GSHP Heating & Cooling
Scientific/Technical Approach (continued)

Project Milestones

• Feasibility Study
 • Complete
 • Provided Favorable Results to both Technical and Economic Viability of Proposed System

• System Concept Development to Final Design
 • Complete

• Well Drilling & Water Rights Certificate
 • Well Drilling to be Complete by May 20, 2010
 • Water Rights Certificates
 • FY10 Go/No Go Decision Point

• System Commissioning
 • September 1, 2010
Accomplishments, Expected Outcomes and Progress

• **Feasibility Study**
 - Payback Period is Approximately 16 Years

• **System Concept Development to Final Design**
 - Complete

• **Construction Permits & Water Rights Certificate**
 - Permits Obtained by May 10, 2010
 - Water Rights Certificates Expected to be Acquired without Problems

• **System Commissioning**
 - September 1, 2010
 - Will Include Heat Pump Manufacturer Representative
 - Adjustments to Source & Load Water Flowrates to Maximize Performance

• **Data Acquisition & Analysis**
 - BTU Meter, Flowmeter, & Temperature Sensors will Measure Energy Delivered to Space While Electric Meter will Measure Power Consumed by Heat Pump Modules
Accomplishments, Expected Outcomes and Progress (continued)

• **Data Acquisition & Analysis (continued)**
 • Data and Analysis Results will be Provided to the DOE through the use of the Geothermal Desktop Software or Other Means Required by the DOE.

• **Equipment**
 • **Heat Pump**
 • Modules can be Combined to Provide *Variable* Output and Allow for Future Expansion (Up to 600 Tons)
 • Can be Piped and Controlled to Produce the desired Evaporator or Condenser Temperature

• **Team Qualifications**
 • **Flathead Electric Cooperative**
 • At Forefront of Renewable Energy in the Region
 • Facility Wide GSHP Systems
 • **Jackola Engineering & Architecture**
 • 50+ Combined Years of GSHP System Design
Project Management/Coordination

- **Phase 1** (February 1, 2010 – June 30, 2010)
 - Feasibility Study, Engineering Design – Jackola Engineering & Architecture
 - Well Drilling & Development – Certified Well Driller
 - Well Testing, Data Analysis, & Water Rights Application to DNRC – Jackola Engineering & Architecture
 - Go/No Go Point – Contingent on Water Rights Certificate from DNRC

- **Phase 2** (May 17, 2010 – September 1, 2010)
 - Project Coordination – Principal Investigator, Director of Facilities Maintenance and Jackola Engineering & Architecture
 - Construction and Equipment Installation – Contractor w/experience in GSHP system installation
 - Weekly site meetings and Project Inspection – Jackola Engineering & Architecture
 - Project Cost Accounting – Flathead Electric Co-Op – Principal Investigator, Support Services Manager & Staff, Contractor
 - System Commissioning – Jackola Engineering & Architecture, Contractor

- **Phase 3** (September 1, 2010 – September 1, 2012)
 - Equipment Operation – Director of Facilities Maintenance
 - Data Collection & Analysis – Flathead Electric Co-Op Energy Services Group
 - Business & Technical Marketing – Flathead Electric Co-Op Marketing Team
• Budget & Cost Share Overview

- Bonneville Power Administration
- Flathead Electric Co-Op
- DOE Funding

• National Geothermal Data System
 • Data and Analysis Results will be Provided to the DOE through the use of the Geothermal Desktop Software or Other Means Required by the DOE.
Future Directions

• Flathead Electric Co-Op Facility HVAC Upgrade Project to Showcase Feasibility of Commercial and/or Industrial GSHP System in Region
 • Public Access to Project Feasibility, Costs, Implementation, and Performance
 • Published on Flathead Electric Co-op’s Website, in Monthly Newsletter, and National Utility Industry Magazines
 • Highlights Commitment to Renewable Energy Initiative
 • Highly Publicized as 1 of 2 DOE GTP Funded Projects in Montana
 • Interest From other Regional Utility Companies

• Sharing of Project Success Factors as Opportunities Arise

• Potential Increase in Ground Source Heat Pump Commercialization based on Proven Feasibility and Performance
Flathead Electric Co-Op Presents Unique and Innovative GSHP Demonstration Project

Predicted to validate Technical & Economic Feasibility of Commercial-Scaled GSHP System in Region

- Instrumental in Keeping the Northwest as the lowest carbon-emitting Region in the U.S.

Utilize Abundant & Clean Natural Resource – Shallow Aquifer

Use of Modern & Highly Efficient System Equipment & Components
- Modular Heat Pump
- Use of Low Temperature Heating Water
- Technically Advanced Pumps – VFD & ECM