Geothermal Technologies Program 2010 Peer Review

HUMAN HEALTH SCIENCE BLDG GEO HEAT PUMP SYSTEMS

May 20, 2010

Principal Investigator

Jim Leidel Oakland University

Source Heat Pumps Demo Projects

This presentation does not contain any proprietary confidential, or otherwise restricted information.

Project Overview

Timeline

Geothermal ground array bid package: April 2010

Geothermal ground array construction: Summer 2010

Main building construction begins: June 2010

Substantial completion: Summer 2012

Performance monitoring & reporting: 2012 through 2014

Budget

Total project: \$9,778,930

DOE share \$2,738,100

Awardee share \$7,040,830

• Barriers (No funds received yet)

 Lack of experience with: Geothermal projects of this size, VRF heat pumps, large solar thermal systems, & desiccant cooling

Architect / Engineer: Smithgroup

Construction Manager: Christman Company

Geothermal Specialist: Strategic Energy Solutions

Relevance/Impact of Demonstration

Geothermal Heat Pump Demonstration

Utilize a ground sourced heat pump HVAC system.

Variable Refrigerant Flow Technology

Utilize variable refrigerant flow (VRF) heat pumps, allows for less compressors and enhanced internal heat recovery.

Solar Thermal Desiccant Dehumidification

Dedicated outdoor air supply units will utilize a thermally regenerated desiccant dehumidification section. A large solar thermal system along with a natural gas backup boiler will provide the thermal regeneration energy.

Original Concept

Closed Ground Loop

Water
Only, No
Antifreeze

Variable Refrigerant Flow

Solar Thermal Desiccant Cooling

Dedicated Outdoor Air Suppy Unit

Choice of Thermally Activated Technology – Desiccant Cooling

Exhaust Air

Outdoor Air Intake

Conditioned Air to Space

temperature [°C]

Geothermal Heat Pump Demonstration

HEAT EXCHANGER INFORMATION	
Configuration	Vertical Closed Loop
Borehole Quantity	256
Borehole Depth	320 feet
Borehole Separation	25 feet
Number of Circuits	20
Thermal Conductivity *	1.23 BTU / (hr-ft-deg F)
Soil Diffusivity	0.83 foot ² / day
Undisturbed Ground Temperature *	53.0 deg F
GHX Pressure Drop	42 feet of head
FLUID INFORMATION	
Total Flow	1,225 GPM
Fluid	Water only
Minimum HP Unit Inlet Fluid Temp	40 deg F
Maximum HP Unit Inlet Fluid Temp	90 deg F

^{*} From formation thermal conductivity test data taken July 30, 2009

Geothermal Heat Pump Demonstration

GROUT INFORMATION	
Grout Type	Thermally Enhanced Bentonite
Minimum Thermal Conductivity	0.88 BTU / (hr-ft-deg F)
FLUSH & PURGE INFORMATION	
Minimum Fluid Velocity	2 feet / second
Minimum Purge Flow (per circuit)	75 GPM
Purge Pressure Drop (per circuit)	47 feet of head
GHX CAPACITY INFORMATION	
Peak Heating	2,000,000 BTU / hour (166 tons)
Peak Cooling	4,920,000 BTU / hour (410 tons)
Heating EFLH	1,455 hours
Cooling EFLH	929 hours

Accomplishments, Expected Outcomes and Progress

- Three Test Bores Geothermal Conductivity Tests Completed
- Geothermal System Design is Complete
- Geothermal Bid Package Issued
- Full Project Design 90% Complete
- Formal Ground Breaking in April 2010

Project Management/Coordination

- Geothermal Well Field to be Constructed
 Completed by September 2010
- Site Work & Foundation Bid Package Due to be Issued in May 2010
- Full Construction Bid Package Due to be Issued in Summer 2010
- Substantial Completion by Summer 2012
- Three Full Years of System Monitoring & Reporting

Project Summary

- Innovative Project with Proven
 Technologies, but New the United States
 - Variable Refrigerant Flow Heat Pumps
 - Desiccant Dehumidification of Outdoor Air Ventilation with Solar Thermal Regeneration
- Large 400 Ton System
- USGBC LEED Building Gold or Platinum Rating

Geothermal Technologies Program 2010 Peer Review

Thank you www.oakland.edu/energy

Jim Leidel Oakland University leidel@oakland.edu