DEC SW 40th Street
Thermal Energy Plant
May 19, 2010

This presentation does not contain any proprietary confidential, or otherwise restricted information.
Project Overview

• Geothermal Heat Pump Central Plant
 – 667 Boreholes at 300 ft depth
 – 25 nominal 70 ton of water-to-water heat pumps
 (1050 tons firm capacity)
• Serving County Adult Detention Facility
 – 779 Beds
 – 270,000 Square Feet
 – Critical Load
 – Secured Facility
• Domestic Hot Water Pre-Heat System
• Emergency Power System
Project Overview

Timeline

Design
- **Project Initiation**: April '08
- **Feasibility Study**: October '08
- **Initial Environmental Review**: February '09
- **Schematic Design**: April '09
- **DD/CD Design**: April '10
- **Equipment Pre-Purchase**: May '10
- **Award Construction Contracts**: May '10

Construction
- **Underground Utilities**: November '10
- **Loop Field Installation**: December '10
- **Construction Service**: Winter '10-11
- **Building Construction (Mechanical and Electrical)**: August '11
- **Completion/Commissioning**: February '12
- **Building Occupancy**: August '12
- **Data Collection**:
Total Project Cost $20,132,824
FY09 Funding = $1,225,224
FY10 Funding = $16,591,659
Project Overview

- **Barriers**
 - Environmental Concerns
 - Wetlands
 - Floodplain
 - National Environmental Policy Act Clearance
 - Bond Financing

- **Partners**
 - Project Management
 District Energy Corp
 - Project Engineering
 Farris Engineering
 - Project Environmental
 Lincoln Electric
 - Project Customer
 County A/E Firm
Relevance/Impact of Research
Program Goals

Applications
Secured Facility, Critical Load

Costs
District Shares Capital Costs

Market
District
Energy

Performance
Load Diversity
Relevance/Impact of Research

• Research results that will achieve DOE Program goals
 – Demonstration of Reduction in Energy Consumption and Cost
 – Data Collection to Support Application of Geothermal Technologies in District Energy Systems
 – Future Added Loads to Show Benefits Available with District Structure
 – Future Expansion to Explore the Versatility of Plant Growth Options
 – Plant Solutions to Possibility of Long Term Temperature Migration
Scientific/Technical Approach

- Feasibility Study
 - Comparison of Mechanical Systems
 - Technical Feasibility
 - Life Cycle Cost Analysis

- Modeling
 - Building Load Modeling
 - Hydraulic Modeling

- Design
 - Collaboration with Industry Experts

- Data Collection/Recording
 - Metering
 - Plant Control System
Scientific/Technical Approach

• Go/No-Go Decisions
 – County Approval
 – Feasibility Study
 – Initial Environmental Review
 – NEPA Clearance

• Milestones
 – Pre-Purchase Equipment Contracts
 – Construction Documents Packages
 – Bond Issuance
 – Loop Field Installation
 – Building Construction
 – Equipment Delivery
 – Thermal Service for Construction Activities
 – Final Completion/Commissioning
 – Metering/Data Collection
Accomplishments, Expected Outcomes and Progress

• Progress to Date
 – Design Substantially Complete
 – Bonds Issued for Recipient Financing
 – NEPA Clearance Granted

• Expected Outcomes
 – Construction of GSHP District Energy Plant
 – Energy/Cost Savings of HW, CHW, and DHW service (~8-9%)
 – Data Collection to Establish Model for Geothermal District System

• Team Qualifications
 – Experience in District Energy and Plant Design
 – Experience in Geothermal System Design
 – Engineering Involved on All Levels
 – Experience in Development and Implementation of Successful District Energy Business and Financial Model
Project Management/Coordination

DEC Project Manager

DEC Project Engineers

Farris Engineering

DEC Plant Management

Building A/E

LES Environmental

County Representatives

Project Design

Project Construction
Project Management/Coordination Schedule

Design Tasks

<table>
<thead>
<tr>
<th>Task</th>
<th>Original Task Schedule</th>
<th>Actual Task Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schematic Design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DD/CD Design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Building Design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Civil Design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loop Field Design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Underground Utilities Design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical Design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical Design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switchgear Design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emergency Generator Design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plant Systems Design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controls Design</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pre-Purchase Equipment

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Original Task Schedule</th>
<th>Actual Task Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emergency Generators</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switchgear</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heat Pumps</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Construction Tasks

<table>
<thead>
<tr>
<th>Task</th>
<th>Original Task Schedule</th>
<th>Actual Task Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Project Construction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Civil Construction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rough Grading</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loop Field Installation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Building Sitework</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Underground Fuel Storage Installation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Underground Utilities Installation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Building Construction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical Installation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical Installation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control System Installation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Original Task Schedule:

Actual Task Schedule:
Project Management/Coordination

Projected Funding Schedule

--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	
Budget Phases	DOE Cost Share $ / %	Recipient Cost Share $ / %	Total Estimated Costs																																			
Phase I	$503,645 / 41%	$721,579 / 59%	$1,225,224																																			
Phase II	$4,458,903 / 27%	$12,132,756 / 73%	$16,591,659																																			
Phase III	$37,452 / 2%	$2,278,487 / 98%	$2,315,939																																			
Total Project	$5,000,000 / 24.8%	$15,132,822 / 75.2%	$20,132,822																																			
Future Directions

Short Term

- FY10 Plans
 - Issue Bonds to Finance
 - Pre-Purchased Equipment Delivery
 - Underground Utilities Installed
 - Construction Service
- FY11 Plans
 - Plant Building Complete
 - Loop Field Installation Complete
- Upcoming Key Milestones
 - Start of Construction
 - Completion of Design Packages
 - Controls System Configuration

Long Term

- Alternative Development Pathways
 - Contingency Plan for Construction Service
 - Addition of Conventional Equipment to Resolve Temperature Migration
- Reporting to National Geothermal Data System
 - Plant Instrumentation
 - Plant Control System
 - System Optimization Analysis
 - Long Term Borefield Conditions
Summary

• Current Status
 – Project is ahead of schedule
 – Project is under budget
 – Major challenges to date have been resolved

• Future Steps
 – Complete Construction
 – Data Collection, Reporting to National Geothermal Data System
 – System Growth
 – District Energy Market Expansion

• Impact to DOE Goals
 – Market=Applications=Performance=Cost