Geothermal Technologies Program 2013 Peer Review

Analysis of Geothermal Reservoir Stimulation using Geomechanics-Based Stochastic Analysis of Injection-Induced Seismicity April, 2013 Principal Investigator: Ahmad Ghassmi

EGS Component R&D > Stimulation Prediction Models

This presentation does not contain any proprietary confidential, or otherwise restricted information.

Relevance/Impact of Research

Energy Efficiency & Renewable Energy

- Develop a model for seismicity-based reservoir characterization (SBRC) by combining rock mechanics, finite element modeling, and geo-statistical concepts to establish relationships between micro-seismicity, reservoir flow and geomechanical characteristics (3D modeling of MEQ distribution; EnKF algorithm)
 - By helping remove barriers to reservoir creation, the project will help increase reserves and lower costs
 - Permeable zones have to be created by stimulation, a process that involves fracture initiation and/or activation of discontinuities
 - Rock stimulation is often accompanied by multiple micro-seismic events. Micro-seismic events are used for detection of permeable zones, planning drilling
 - reservoir management; induced seismicity

Scientific/Technical Approach

- Physical processes considered
 - Fully-coupled thermo-poroelastic constitutive equations
 - Rock damage & stress dependent permeability
 - Uncertainty in material parameters and the in-situ stress
 - Estimate hydraulic diffusivity and criticality distribution
 - Combine an initial probabilistic description with the information contained in micro-seismic measurements
 - Arrive at solutions (reservoir characteristics) that are conditioned on both field data and our prior knowledge
 - Uncertainty in material parameters and the in-situ stress
 - Calibration using lab and field data

Scientific/Technical Approach

Thermo-poroelastic Constitutive Equations

$$\dot{\sigma}_{ij} = 2G\dot{\varepsilon}_{ij} + \left(K - \frac{2G}{3}\right)\dot{\varepsilon}_{kk}\delta_{ij} + \alpha \dot{p}\delta_{ij} + \gamma_1 \dot{T}\delta_{ij} \quad \dot{\zeta} = -\alpha \dot{\varepsilon}_{ii} + \beta \dot{p} - \gamma_2 \dot{T} \qquad \gamma_1 = K\alpha_m$$

$$\gamma_2 = \alpha \alpha_m + (\alpha_f - \alpha_m)\phi$$

- Elastic Damage Mechanics $E = (1-d) E_0 \qquad d = 1 - \frac{f_{cr}}{E_0 \varepsilon} \qquad (\varepsilon > \varepsilon_{cr})$ $d = 1 - \left[\left(\frac{f_{cr} - f_c}{\varepsilon_{cr} - \varepsilon_c} \right) (\varepsilon - \varepsilon_c) + f_c \right] / E_0 \varepsilon \qquad (\varepsilon_c < \varepsilon < \varepsilon_{cr})$
- Stress Dependent Permeability Elastic phase $k = k_0 e^{-\beta_d \left(\sigma_{ii}/3 - \alpha p\right)}$

Damage phase $k = \zeta_d k_0 e^{-\beta_d (\sigma_{ii}/3 - \alpha p)}$

Tang et al., 2002

Accomplishments, Expected Outcomes and Progress

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

3D finite element model has been developed for thermo-poromechanical coupled reservoir simulation S_v **Injection Rate Or Pressure** Damage mechanics Stress dependent permeabi Convective heat transfer Rock heterogeneity Pressure & Injection rate and pressure BC S H. max 400 S _{h, min} 800 1000 m

U.S. DEPARTMENT OF

ENERGY

Energy Efficiency &

Renewable Energy

E (GPa)

16 12

10 8

6

Accomplishments, Expected Outcomes and Progress

Simulation of Injection Experiment

- 3D rock body of dimensions x = 1000, 1000, 500 m
- Water is injected into the granitic rock from a central interval of 25 m at 2.5 Km
- Temperature difference of 150 C, Distribution of

Accomplishments, Expected Outcomes and Progress

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Role of thermal stress (wellbore simulation): MEQ events after 65 hrs of pumping: (a) isothermal and (b) cold water (50° C) injection into reservoir (200° C)-See Supplements

Accomplishments, Expected Outcomes and Progress

Injection-induced MEQ for GPK1 Soultz.; Natural fracture inclined 20° from vertical; 50 m radius NF modulus is (~0.1 MPa) with permeability of 1 darcy **Normal stress regime:**

 $S_{\text{H,max}} = 50$ MPa, $S_{\text{h,min}} = 30$ MPa, Sv = 60 MPa

(b)

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

(a)

Accomplishments & Progress: EnKF Procedure for 3D Application

Energy Efficiency & Renewable Energy

based model, one injection well (constant BHP) at center (perforated through entire thickness)

permeability distribution from MEQ monitoring data

Final estimated L_{perm} which is very similar to true L_{perm} distribution

confirms_{the} suitability of EnKf for characterizing 3D permeability distribution using MEQ integration.

Accomplishments & Progress: EnKF **Procedure for 3D Application**

Energy Efficiency & Renewable Energy **ENERGY**

U.S. DEPARTMENT OF

Figure 1. Proposed framework for stochastic seismicity-based reservoir characterization for enhanced genthermal systems.

Accomplishments, Expected Outcomes and Progress

Energy Efficiency & Renewable Energy

- Developed 2D and 3D coupled thermo-poroelastic reservoir geomechanics models
- Stress dependent permeability
- Rock heterogeneity and damage mechanics
- MEQ event location
- Implemented damage mechanics in the FEM and have shown its utility in simulation rock failure and stimulated volume for different stress regimes, rates, etc.
- Developed probabilistic approaches for integrating MEQ into EnKF inversion method, applied to 2D and 3D diffusion & geomechanics models

Accomplishments, Results and Progress

Energy Efficiency & Renewable Energy

Original Planned Milestone/ Technical Accomplishment	Actual Milestone/Technical Accomplishment	Date Completed
2D mode, a Preliminary 3D formulation	2D distribution of MEQ	10/2010
Full development of 3D geomechanics model, with damage and stress-dependent permeability	3D modeling of MEQ distribution	10/2011
Fine tuning of 3D geomechanics model, application to and analysis of different stress regimes, EnKF development	2D EnKF for geomechanics 3D EnKF with diffusion	6/2011
3D geomechanics stochastic modeling	3D geomechanics & EnKF	2012-13
Improve the FEM program to better define nature of damage zone and to treat larger scale problems, improve and implement stochastic algorithms in 3D model; Compare model with lab and field data	Will apply to some lab experiments, block experiment application ongoing	2013

Future Directions

- The goal is to have a 3D geomechanical model to help analyze reservoir stimulation using MEQ
- The model will be applied to EGS experiments by AltaRock and others that have been done or are planned
- Future work includes
 - improve FEM program: consider introduce discrete fractures and fine tune damage interpretation, efficiency for large scale problems
 - Quantify MEQ events
 - Fully implement developed stochastic algorithms in 3D model and perform additional analysis
 - perform triaxial compression tests to determine rock mechanical properties and asses the model predictions for predicting shear and tensile failure

• We have demonstrated:

- Development of 2D and 3D reservoir characterization models based on geomechanics with relevant physical processes such as thermal and poroelasticity stress and rock heterogeneity
- Implemented damage mechanics in the FEM and have shown its utility in simulation rock failure and stimulated volume for different stress regimes, rates, etc.
- Developed probabilistic approaches for integrating MEQ into EnKF inversion method, applied to geomechanical modeling

Project Management

Timeline:	Planned	Planned	Actual	Actual /Est.
	Start Date	End Date	Start Date	End Date
	1/1/2009	12/31/2011	9/15/2009	12/31/2013

Budget:	Federal Share	Cost Share	Planned Expenses to Date	Actual Expenses to Date	Value of Work Completed to Date	Funding needed to Complete Work
	\$814,386	\$203,598	\$1,000,000	\$1,010,000	\$937,500	\$75

• The project is slightly behind as we started late (funds not allocated); student recruitment and training required more time, and finally PI, co-PI and research team moved to another institution and some tasks are pending.