Southwest Alaska Regional Geothermal Energy Project

May 19, 2010

Donna Vukich
Gary Friedmann
Naknek Electric Association
Engineered Geothermal Systems Demonstration Projects

This presentation does not contain any proprietary confidential, or otherwise restricted information.
Project Overview

Timeline
• Project start date: May 1, 2010
• Project end date: December 31, 2011
• Percent complete: 1%

Budget
• Total project funding: $31,346,500
• DOE share: $12,376,000
• Awardee share: $18,970,500
• Funding received in FY09: $0
• Funding for FY10: $278,380

Barriers
• Developing EGS in an area anticipated to have normal temperature gradient -- different from nearly all other EGS demonstration projects in the US and throughout the world.
Project Overview

• Drilling to target depth of 12,000 to 14,000 feet is extremely expensive.
• High existing electricity costs and the variability of fuel prices make this deep EGS option attractive for Naknek and other remote locations in Alaska.

Technical Partners
• Alaska Earth Sciences
• Castle Mountain Group
• GeothermEx
Project Location

Naknek Electric Association
Geothermal Site
Relevance/Impact of Research

Project Objectives

• Develop a renewable energy resource to offset diesel-fired electricity and heating in a region with few alternatives.

• Stabilize electric rates in Naknek and 25 rural communities by replacing >5.4 mm gals of diesel used for electricity and heating, avoiding >$15,000,000/yr in fuel costs.

• Decrease costly and hazardous transportation of fossil fuels along habitat-sensitive waterways of Bristol Bay, home of the world’s largest wild salmon runs.

• Stabilize energy costs to foster economic development
The Southwest Alaska Regional Geothermal Energy Project will advance geothermal energy development in remote regions of Alaska and across the US:

- Demonstrating EGS technology where energy costs are high and the geothermal gradient is normal
- Procuring a rig capable of drilling up to 20,000’ for use throughout Alaska
- Training and employing local residents in geothermal drilling technology
- Serving as a stepping stone to a regional geothermal power initiative for Southwest Alaska, which is poised geographically and geologically for major economic development.
Scientific/Technical Approach

• Comprehensive EGS Field Demonstration Project
 – To characterize the region of Alaska lying behind the volcanic arc
 – To create and validate a sustainable EGS reservoir to initially supply 8MW electrical power for Naknek Electric Association members
 – To ultimately provide 25MW to 50MW to power 10 to 30 rural communities in Southwestern Alaska

• Phase I: Analyze rocks encountered in well Naknek G-1 to facilitate development of an EGS reservoir
 – Determination of stress field orientation
 – Assessment of geothermal resource
Scientific/Technical Approach

- **Methods**
 - Conduct Environmental Assessment
 - Install Passive Seismic Array
 - Analyze Geophysical Logging Data from well G-1
 - Petrologic / Mineralogic Analyses of Cuttings.
 - Baseline Injection and/or Production Testing of Well G-1
 - Heat-Up Temperature Surveys in Well G-1
 - Stress Modeling
 - Design and Establish Seismic Monitoring System
 - Construct a Conceptual Geothermal Resource Model
 - Pre-Stimulation of Well G-1
Scientific/Technical Approach

• **Phase II**: Stimulation of G-1, and planning for the drilling and evaluation of well G-2 or G-3
 – Conduct Chemical and/or Hydraulic Stimulation in Well G-1
 – Evaluate Stimulation Results
 – Finalize G-2 or G-3 Drilling Target

• **Phase III**: drilling, logging and testing of well G-3
 – Drill well to 10,000 – 14,000 feet
 – Collect sonic velocity, density, caliper, gamma ray, and wellbore image logs
 – Collect core & perform mini-frac
 – Evaluate temperature and productivity of well
 – Circulation test
Scientific/Technical Approach

- **Phase IV:** Long-term testing and evaluation of results to determine the power generation level of the project.
 - Circulation testing
 - Analysis of circulation testing results for long-term operation of the system and power generation
Accomplishments, Expected Outcomes and Progress

- Well G-1 has been drilled to 10,433’
- With an eye to the most essential elements of the EGS plan, NEA will characterize the rock mass and stress field to facilitate hydraulic and/or chemical stimulation of the well.
- Work will begin immediately on planning and contracting for G-2
- The focus lies squarely on generating EGS power.
Project Management/Coordination

- NEA has assembled a highly qualified team with significant EGS experience
- NEA’s share of drilling G-1 is $18 million
- NEA members are paying a temporary $0.09/kW surcharge to finance the project
- The State of Alaska has allocated $2 million to G-1
- $2.8 million in FY09 and $2.5 million in FY10 Congressional Designated Program funds are allocated to drill G-2
Future Directions

May 2010: Evaluation & flow testing of G-1
June: Design, contracting and procurement for G-2
July: Skid rig, set conductor, ship materials to Naknek
August - November: Drill G-2
November-December: Stimulation of G-2
December – February: Circulation testing
March – May 2011: Design, permitting and procurement for G-3
June 2011: Skid rig, set conductor and ship materials to Naknek
July – October: Drill G-3
November-December 2011: Analysis, evaluation, stimulation and circulation testing
The SW Alaska Regional Geothermal Energy Project will:

- Leverage $100,000 in Alaska Department of Labor funding to train drillers in collaboration with the Southwest Alaska Vocational Education Center
- Create 35 locally-based, full-time jobs to drill, stimulate and prepare three geothermal wells for production (not including another 40 temporary positions hired through subcontractors)
- Provide high-quality jobs in the continuing development of this and other spinoff geothermal energy projects in rural Alaska
Summary

The SW Alaska Regional Geothermal Energy Project will:

• Demonstrate the feasibility of developing a utility-grade resource in a green field site with normal geothermal gradients.
• Test and assess G1, drilled to 10,433’, to determine which EGS activities will be applied to stimulate the well.
• Drill, test, and stimulate two more wells to establish high-capacity injection and production systems.