CHARACTERIZATION OF DYNAMIC LOADS ON SOLAR MODULES WITH RESPECT TO FRACTURE OF SOLAR CELLS

Sascha Dietrich, Matthias Pander, Martin Sander, Matthias Ebert &

Sponsored by the

Fraunhofer - Center for Silicon-Photovoltaics CSP
Walter-Huelle-Straße 1, 06120 Halle (Saale)
Telefon +49 (0) 345/5589-408
sascha.dietrich@csp.fraunhofer.de

Results – 4-Point-Bending &

- reduction of P_f after lamination (Fig. 5) due to increased pressure load across cell (Fig. 4)
- PVB shows higher stiffness level and larger dependency on time (Fig. 6)
- visco-elastic behavior of encapsulant characterizes the load on solar cells (Fig. 7)
- generally at low temperatures strain rate dependency decreases (Fig. 8)
- but: glass transition increases damping (i.e. see loss factor for EVA)

Discussion

- time-temperature superposition important for definition test conditions at room temperature (Fig. 8)

Results – Modules

- IEC CD 62782 "Dynamic Mechanical Load Testing"

 - 1000 Pa
 - 7 sec dwell time at elevated load
 - 1 – 3 cycles/minute
 - room temperature
 - number of cycles / min crucial to applied load on cells

<table>
<thead>
<tr>
<th>Cycles / min</th>
<th>Dwell Time / sec</th>
<th>Time / sec</th>
<th>Ramp / Pa/sec</th>
<th>Ramp / N/sec</th>
<th>Ramp / mm/mm/min</th>
<th>P_f Relative Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>7</td>
<td>7746.5</td>
<td>1.34</td>
<td>2.14</td>
<td>1-2</td>
<td>1.00 ± 0.65</td>
</tr>
<tr>
<td>1.00</td>
<td>7</td>
<td>11.50</td>
<td>87</td>
<td>139</td>
<td>70-2</td>
<td>1.53 ± 1.00</td>
</tr>
<tr>
<td>3.00</td>
<td>1.50</td>
<td>666</td>
<td>1087</td>
<td>533</td>
<td>1.81 ± 1.18</td>
<td></td>
</tr>
<tr>
<td>3.66</td>
<td>0.60</td>
<td>1671</td>
<td>2674</td>
<td>1300</td>
<td>1.95 ± 1.28</td>
<td></td>
</tr>
<tr>
<td>4.00</td>
<td>0.25</td>
<td>4000</td>
<td>6400</td>
<td>2834</td>
<td>2.08 ± 1.37</td>
<td></td>
</tr>
</tbody>
</table>

* Module size 1.6 m²
* Example from FE Simulation for 1.6 m² Module (100 Pa)

Bibliography &

