US & Japan TG 4 activities of QA Forum

QA Task Force 4 : Diode, Hot Spot, Shading & Reverse Bias

- Paul Robusto (Intertek)/Vivek Gade (Jabil) Co-Leaders US Team
  February 26, 2013

Overview

• Introduction
• Summary of Testing (Jabil, NREL, Japan, Solaria)
• Presentation - Testing at Solaria and Summary of Testing (ESD)
  - Kent Whitfield
• Presentation - Testing by the Japan Team (ESD, Diode, J-box & Module-Thermal Runaway)
  - Y. Uchida (JET) & Y. Konishi (Onamba)
• Poster - Testing at NREL (Diode, Hot Spot, J-box)
  - Zeng Zhang (Chandler), John Wohlgemuth, and Sarah Kurtz
• Poster - Testing at MEMC/SunEdison (High Temp Rev. Bypass Diodes bias & Failures)
  - Jean Posbic, Eugene Rhee and Dinesh Amin
Introduction

• Several failures have been known to exist primary are: sustained over heating over a long period of time, Reverse bias thermal run away, Shading and un-shading resulting in thermal runaway and electrostatic discharge related events.

• Team of module manufacturers, diode manufacturers and researchers in Task group 4 investigated several scenarios and how failures modes can be recreated through reliability testing.

• Few working groups were formed. Work performed by those working groups is introduced in this presentation. Few of the specific presentations detailing results will follow this introduction.

• Correlation is hampered due to limited Field failure data.
History

• 2011: Task Group 4 reviewed testing standards and identified potential gaps:
  – Accuracy of diode technical data sheet.
  – Qualification tests that ensure reliability.
  – Electrostatic Discharge (ESD) susceptibility.

• 2012: Task Group performed series of experiments
  – ESD testing HBM, MM, IEC Model
  – Statistical and Weibull analysis
  – HTFB/RB and thermal cycling testing
  – Thermal Runaway Tests of J-boxes
Jabil Tests Status/Plans

- Extended test time for standard bypass diode test with 1.25 Isc at 80°C (720 hours)
  1) No issues of fatigue or drop in voltage seen.
  2) Sample size 6
  3) 12A rated diodes with different junction box designs
Ongoing tests and future Tests Plans

- Reverse bias testing of cells at High Temperature (on going on random samples)
  1) No issues of early breakdown at 50C observed so far at 12V for one hour testing. (Monitoring with an IR camera for local hot spots and temperature rise)
  2) Four different cell manufacturers

- Diode testing with Reverse bias at high temperature and reverse bias transition survivability (Not initiated yet, tentative start date April 2013)
  1) Reverse bias voltage levels: 80% of the rated reverse voltage.
  2) Temperature levels: Maximum rated Junction temperature.
  3) Sample size 10

- Validation of test results obtained at NREL (April 2013)
Field failed diode analysis

Failure analysis of field failed diode provided by NREL was facilitated. This was the only failed sample that the group had received from the field. Unfortunately little could be learned from the failure analysis due to the extent of the damage to the diodes; resulting in the die fracturing in several places and the epoxy mold compound carbonizing on the front face of the die, preventing it from being removed by standard chemical methods. It was clear from the damage to the die, packages and the surrounding plastic unit that the over-stress event was very severe, generating significant temperatures.
Three types of J-boxes were used for the thermal reliability testing:

- **Test 1 --- High temperature endurance testing with forward biased current.**
  - Objective: To assess diodes operating performance under long-term hot spot condition (50C/60C/70C), 10A, 1000 hrs
  - Result: No diode failed. The diode temperature rises and forward voltages of J-box 1 and 3 increased after testing. Diodes in J-box 2 were very stable

- **Test 2 --- Thermal cycle plus forward bias/reverse bias.**
  - Objective: To assess diodes reliability under thermal cycling (-40 to 85C) caused by ambient temperature change combined with hot spot current flow (10 A above 25C) for first 100 cycles, -12V for above 25C for second 100 cycles.
  - Result: After the testing, diodes of Box-1 totally failed (middle diode); diodes forward bias voltage of Box-3 increased by 0.5V; diodes forward bias voltage of Box-2 were stable.

- **Test 3 --- Thermal cycle plus reverse bias.**
  - Objective: To assess diodes reliability under thermal cycling caused by ambient temperature change without hot spot.
  - Result: There is no abnormal appearance of diode were found and no appreciable changes in terms of reverse diode characteristics were detected.

**Next step:**
Design experiment to simulate the field condition of momentary shading on the PV modules caused by cloud or bird, etc.
1. Thermal runaway test results of J-boxes
   Reverse bias test at high temperature (Thermal runaway test)
   ① for J-box-A / with potting
   ② for J-box-B-1 / without potting
   ③ for J-box-C / without potting

2. Tj (junction temperature) measurement method for Bypass diode
   Comparison with Vf-Tj method and Tlead method

Recommendation: we should use the Vf-Tj method in accordance with "paragraph 10.18 Bypass diode thermal test / procedure 2 specified in IEC61646".
ESD Testing Program – Status

- Diode ESD Susceptibility identified as a gap in current qualification testing programs in the Task Group 4 white paper issued September 2011 (pbworks QA Rating Wiki).
- Extensive research and testing program started in October 2011 and has, thus far:
  - Identified ESD as a failure mode of concern for Schottky diodes
  - Corroborated that some manufacturing line and 3rd party failures of diodes can be traced to ESD events. Field data remain elusive.
  - Found that a step-stress ESD testing method using a standard IEC impedance model appears effective at uncovering differences in susceptibility between similarly rated Schottky diodes and:
    - Only positive surges against the cathode side produce failures
    - A minimum of ten surges on each of ten samples is required to produce a Weibull cumulative distribution function that matches well with a higher number of surge events on a larger sample size.
    - Been able to correlate test method results to one manufacturer’s experience with in-house failure rates.
- Present effort is to obtain other manufacturer’s input on method.
  - Likely to use IEC Test Method as a vehicle to allow inter-manufacturer comparison with method and results.
Technical Presentations

• ESD Surge Characterization of Schottky Diodes
  by Kent Whitfield (Solaria)

• On the occurrence of thermal runaway in Diode in the J-box
  by Y. Uchida (JET)
1. **The Thermal Reliability Study of Bypass Diodes in Photovoltaic Modules**
   
   by Zhang, Zhen., Wohlgemuth J. 1, Kurtz,
   National Renewable Energy Laboratory, Golden, Colorado, USA
   State Key Lab of Photovoltaic Science and Technology, Trinasolar Co. Ltd.,
   Changzhou, China

   If the heat dissipation is not good enough, there is still some possibility of diodes degradation or failure in PV modules under hot spot condition. Thermal cycle condition with forward biased current to diode, are representative of hot spot conditions, can impose a strong thermal fatigue stress to diode, and may cause failure for bypass diodes of some PV module that may be able to pass present criteria of IEC 61215

2. **High Temperature Reverse By-Pass Diodes Bias and Failures**

   by Jean Posbic, Eugene Rhee and Dinesh Amin (MEMC/SunEdison)

   They developed a very simple method to test diodes in a j-box or individually in the lab without the need for a sophisticated thermal chamber.
US TG 4 activities of QA Forum

QA Task Force 4; Diode, Shading & Reverse Bias
Diode ESD Characterization
Contains no confidential information.

Kent Whitfield
with thanks to Solaria for their support of this work
Overview of Presentation

• ESD Surge Characterization of Schottky Diodes
  ➢ Motivation – Why ESD characterization of diodes might be important
    ➢ History
    ➢ Case study
    ➢ Observations from failed diodes
  ➢ Methods to characterize a diode’s ESD tolerance
    ➢ Environment
    ➢ Testing methods
    ➢ Proposed procedure
    ➢ Data analysis
    ➢ Correlation to failures encountered
  ➢ Next steps
A Completely Selective History

- 1985: General diode reliability guidelines based primarily on operational temperature.
  - 90% of the failures were from common causes that included lack of adequate bypass diode protection (hot spot failures).

- 1993: 20k modules had a 50% failure rate over ten years.

- 2011: Task Group 4 reviewed testing standards and identified potential gaps:
  - Accuracy of diode technical data sheet.
  - Qualification tests that ensure reliability.
  - *Electrostatic Discharge (ESD) susceptibility.*

<table>
<thead>
<tr>
<th>Diode Type</th>
<th>Maximum Allowable Junction Temperature</th>
<th>Derated Temperature for Long-Term Reliability</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-n</td>
<td>175°C</td>
<td>125°C</td>
</tr>
<tr>
<td>Schottky</td>
<td>125°C</td>
<td>75°C</td>
</tr>
</tbody>
</table>
Case Study

- Field Failure Data: Anecdotal, mostly onesy-twosey, occasional large scale at A site. Suggests some batch/site-specific behavior.
- Undisputed: Schottky diodes are found to fail at a measurable rates in production – Final IV curve/EL.
  - 2011: Sudden onset of certification samples and production modules being found with shorted diodes.
  - No process or design change and some certification tests NOT related to diodes:
    - TC50, TC200, DH1000, Preconditioning???
  - Failure rate goes from 0.0% to 0.4% in one facility, but in another with ESDS 20.20 compliance, rates stays at 0.0%.
More Observations

- Decap and FA indicates all diodes of suffering from electrical overstress – but inconsistent from ESD alone due to presence of melted regions.
- Failed diodes happen to conform to a specific date code range.

Melt zone
• Evidence seems to point to ESD susceptibility change in this case study only.
• Bigger question is what is the susceptibility?
Characterization of Environment

- Electrostatic voltage in the facility.
  - Simple, low-cost test equipment and fast to characterize.
  - Cannot gauge charge transfer which is critical to the ESD failure mode.
- ESD event meter.
  - Simple, but higher-costing test equipment.
  - Can gauge peak voltage stress associated with standard charge transfer models.
Knowns

- Schottky diodes more susceptible to ESD damage.
- ESD events may occur from
  - human contact only, or
  - In-house charged-device/operator interaction such as jbox installation, connecting to test equipment (hi-pot, IV, EL), or
  - 3rd party charged device interaction, or
  - In field installation.
How to Characterize Susceptibility

• Most commonly used impedance circuits for ESD testing are:
  – Impedance Circuits:
    • ANSI/ESDA/JEDEC JS-001 – Human Body Model
      – Bare finger
    • JEDEC JESD22-A115C – Machine Model
      – Charged machine
    • IEC 61000-4-2 – ESD Immunity
      – Discharges from operators
Testing with leads already formed for jbox believed to be important.
Differences in the Impedance Circuits

- Hard to measure voltage and current during actual test without affecting results.
- Contact repeatability issues also occur.
- So, validate a LTSpice model against real current waveforms and use model to improve understanding of surge differences.

![Diagram](attachment:image.png)

1kV Surge Voltage

20A, 40V

Tektronix CT-1

10:1 into GHz oscilloscope
LTSPICE Model
Machine Model
Impedance

Key Consideration – This model diode is fully recoverable in the breakdown region regardless of current. Actual diodes are also fully recoverable in breakdown below a specific current threshold at a specific temperature.
Comparison to Actual

Machine Model

IEC 61000-4-2

Human Body Model

One model matches real current waveform quite well!
LTSPICE Voltage and Current

Numerically integrated surge energy ~0.4 mJ

Numerically integrated surge energy ~7 µJ

Numerically integrated surge energy ~4 µJ
Arrived at ESD Testing Method

- 5kV steps from 5kV to 30kV using a simple multimeter check for short-circuit following surge application.
- Sample size of 10 diodes all having same date code.
- 10 positive surges applied to cathode side with 10 seconds between surges.
  - Literature suggests breakdown region on die is small so relaxation time required between surges.
- A Weibull curve used to fit data.
  - Where we have substituted surge voltage for time.
  - The CDF is thus interpreted to mean fraction of all units in the population which will fail by V peak voltage having a voltage and current waveform given by the IEC model.
  - Shaded region indicates a 95% confidence interval around the median line.

Group A, 56 samples tested, 2800 ppm expected fails at a 2.5kV peak ESD voltage.

Group C, 10 samples, 0-100ppb expected fails at a 2.5kV ESD peak voltage.
ESD Surge Testing

• Basis of ESD Test – IEC 61000-4-2
• Surge-to-Failure, Step-Stress Program.

Considered following variables:

– Impact to reverse leakage current at room temperature
  • No correlation below failure threshold.
– Impact to reverse leakage current when diode is at 60C
  • No correlation below failure threshold.
– Impact of positive surges against anode side of diode
  • No failures observed.
– Impact of positive surges against cathode side
  • Resulted in failures.
– Impact of sample size
  • Similarity of failure distributions exists with samples sizes from 10 to 60 at 95% confidence,
– Impact of number of surges applied per stress step
  • Similarity of failure distributions exist with 5 to 50 surges at 95% confidence.
– Compared results using IEC model with Machine Model
  • Failure distributions are similar in Weibull space, but shifted to lower voltages in the Machine Model.
Some Confirmation of Technique

- Static voltage measurement indicated a 2500V risk in area of jbox installation.
- Tested a group of diodes using IEC model and selected one that SHOULD result in a 7.2ppb failure rate of at this level of ESD voltage.
- Actual failure rate in production found to be 82ppm!
- Changed in-house measurement from static voltage to actual ESD event detection.
- Measured 47 ESD events and mean found to be 8.2kV NOT 2.5kV.
- This mean correlated well with the observed production failure rate.
Conclusion and Next Steps

• ESD found to damage Schottky diodes.
• ESD events triggered when there is an interaction between charged devices during installation or testing although there appears to also be some operator interaction.
• Failure rates differ from diode-to-diode even when ratings are the same.
• A test procedure based IEC surge standard seems to be useful in characterizing diode ESD susceptibility.
• NEED other manufacturers to corroborate findings.
• PROPOSE a test method in IEC TC82, WG2 but without pass/fail criteria.
Thank you!
On the occurrence of thermal runaway in Diode in the J-box

J-TG 4 activities of QA Forum
QA Task Force 4 ; Diode, Shading & Reverse Bias

Feb. 26-27, 2013  @ Denver, USA

Y. Uchida / JET (Japan Electrical & Environment Technology Laboratories)
Y. Konishi / ONAMBA CO.,LTD.
T. Okura / SOMA OPTICS, LTD.
J-TG4 Activity Report

J-TG4 activities had been reported in the following events;

1. Dec.08, 2011  2nd. QA Forum Tokyo
2. Feb. 28, 2012  NREL PV Module Reliability Work-shop
3. May 07, 2012  WG2 STRESA meeting
4. Oct.01, 2012  WG2 Oslo meeting
5. Nov.27, 2012  3rd. QA Forum Tokyo
Background

→ Trend of Bypass diode from P/N Si diode to SBD

This trend is because of the addition of “Bypass diode thermal test” in IEC 61215 Ed2. (2005-04),

① When applying current of Isc at 75°C, diode junction temperature shall not exceed max. rated Tj.

② When applying current of "1.25XIsc" at 75 °C, the function of diode shall not be impaired.

On top of the above requirements, due to the pressure of the price reduction of diode and suppression of heat-up, the bypass diode has switched to the SBD with low Vf.
Test reports

Test① Continuous current test for J-box
   ①-1 for Diode-A
   ①-2 for J-box-A

Test② Intermittent current test for Diode
   ②-1 for Diode-A
   ②-2 for Diode-B

Test③ Reverse bias test at high temperature *(Thermal runaway test)*
   ③-1 for J-box-A / with potting
   ③-2 for J-box-B-1 / without potting
      for J-box-B-2 / without potting
   ③-3 for J-box-C / without potting

Reported at WG2 Oslo meeting.
Contents of this report

1. Thermal runaway test results of J-boxes

2. Tj measurement method for Bypass diode
J-boxes for Thermal-runaway tests
Summary of “Reverse bias test at high temperature”;

**Test ③-1 ; J-box-A / with potting**  (Test sequence: ①center→②right→③left)

- Chamber temp. : 90°C

<table>
<thead>
<tr>
<th>Reverse bias / Vr</th>
<th>15V</th>
<th>20V</th>
<th>25V</th>
<th>30V</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>If / Forward current</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11A</td>
<td>4. Center ○</td>
<td>5. Center ○</td>
<td></td>
<td>6. Center ×</td>
</tr>
<tr>
<td>12A</td>
<td>7. Right ○</td>
<td></td>
<td>8. Right ×</td>
<td></td>
</tr>
<tr>
<td>13A</td>
<td></td>
<td>9. Left ×</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

○ ; No thermal runaway  
× ; Thermal runaway

The numbers mean a test sequence.
### Summary of “Reverse bias test at high temperature”:

**Test ③-2 ; J-box-B-1 / without potting**

<table>
<thead>
<tr>
<th>If / Forward current</th>
<th>Chamber temp. : 75°C</th>
<th>15V</th>
<th>20V</th>
<th>25V</th>
<th>30V</th>
</tr>
</thead>
<tbody>
<tr>
<td>8A</td>
<td></td>
<td>1. Center ○</td>
<td>3. Center ○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9A</td>
<td></td>
<td>2. Center ○</td>
<td>5. Center ○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11A</td>
<td></td>
<td>4. Center ○</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- ○ ; No thermal runaway
- × ; Thermal runaway

*The numbers mean a test sequence.*

<table>
<thead>
<tr>
<th>If / Forward current</th>
<th>Chamber temp. : 90°C</th>
<th>15V</th>
<th>20V</th>
<th>25V</th>
<th>30V</th>
</tr>
</thead>
<tbody>
<tr>
<td>8A</td>
<td></td>
<td>6. Center ○</td>
<td>8. Center ○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9A</td>
<td></td>
<td>7. Center ○</td>
<td>10. Center ○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11A</td>
<td></td>
<td>9. Center ○</td>
<td>11. Center ×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary of “Reverse bias test at high temperature”:

Test ③-2 ; J-box-B-2 #3 / without potting (Test sequence : ①center→②right→③left)

<table>
<thead>
<tr>
<th>VR; reverse voltage</th>
<th>Center diode</th>
<th>Right diode</th>
</tr>
</thead>
<tbody>
<tr>
<td>15VR</td>
<td>20VR</td>
<td>15VR</td>
</tr>
<tr>
<td>15VR</td>
<td>20VR</td>
<td>15VR</td>
</tr>
<tr>
<td>15VR</td>
<td>20VR</td>
<td>15VR</td>
</tr>
</tbody>
</table>

■ Chamber temp. : 75°C

<table>
<thead>
<tr>
<th>If</th>
<th>Left diode</th>
<th>Center diode</th>
<th>Right diode</th>
</tr>
</thead>
<tbody>
<tr>
<td>8A</td>
<td>Not done</td>
<td>1. ○</td>
<td>1. ○</td>
</tr>
<tr>
<td>9A</td>
<td>Not done</td>
<td>2. ○</td>
<td>2. ○</td>
</tr>
<tr>
<td>11A</td>
<td>Not done</td>
<td>4. ○</td>
<td>4. ○</td>
</tr>
</tbody>
</table>

■ Chamber temp. : 90°C

<table>
<thead>
<tr>
<th>If</th>
<th>Left diode</th>
<th>Center diode</th>
<th>Right diode</th>
</tr>
</thead>
<tbody>
<tr>
<td>8A</td>
<td>Not done</td>
<td>6. ○</td>
<td>6. ○</td>
</tr>
<tr>
<td>9A</td>
<td>Not done</td>
<td>1. ○</td>
<td>7. ○</td>
</tr>
<tr>
<td>11A</td>
<td>2. ○</td>
<td>3. ×</td>
<td>9. ×</td>
</tr>
<tr>
<td>12A</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

If 12A: 13. ×
Summary of “Reverse bias test at high temperature”;

Test ③-3 ; J-box-C / without potting

<table>
<thead>
<tr>
<th>Chamber temp. : 75℃</th>
<th>Reverse bias / Vr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15V</td>
</tr>
<tr>
<td>If / Forward current</td>
<td>8A</td>
</tr>
<tr>
<td></td>
<td>9A</td>
</tr>
<tr>
<td></td>
<td>11A</td>
</tr>
<tr>
<td></td>
<td>12A</td>
</tr>
</tbody>
</table>

โอ ; No thermal runaway
× ; Thermal runaway

The numbers mean a test sequence.

| Chamber temp. : 90℃ |
|---------------------|-------------------|
|                     | 15V  | 20V  | 25V  | 30V  |
| If / Forward current| 8A   | 6. Center ○ | 8. Center ○ |
|                     | 9A   | 7. Center ○ |
|                     | 11A  | 9. Center× |
|                     | 12A  |        |      |      |
## Temperature of each diode in J-box under the forward current

<table>
<thead>
<tr>
<th>J-box-A-3 / Chamber temp. ; 75°C</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>If</strong></td>
</tr>
<tr>
<td>9A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>J-box-B-1 / Chamber temp. ; 75°C</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>If</strong></td>
</tr>
<tr>
<td>9A</td>
</tr>
<tr>
<td>11A</td>
</tr>
<tr>
<td>12A</td>
</tr>
<tr>
<td>13A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>J-box-B-1 / Chamber temp. ; 90°C</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>If</strong></td>
</tr>
<tr>
<td>9A</td>
</tr>
<tr>
<td>11A</td>
</tr>
<tr>
<td>12A</td>
</tr>
<tr>
<td>13A</td>
</tr>
</tbody>
</table>

The temperature of the center diode is affected by the left and right diodes and becomes the highest.

Note; The Tj was obtained from the Vf value using Vf-Tj relation.
Results of the study -1

1. We were able to confirm the thermal runaway of the SBD during high-temperature reverse bias.

2. As for the thermal runaway, the timing of switching from forward to reverse is important.

3. We have confirmed that the conditions for the thermal runaway was different according to the type of J-box (ex.; J-box shape and with or without the potting materials).
   → We are planning to perform the thermal runaway test for some more J-boxes with different diodes.

4. In case of typical J-box with 3 diodes in the box, the temperature of the center diode is affected by the left and right side diodes and becomes the highest.
Contents of this report

1. Thermal runaway test results of J-boxes

2. Tj measurement method for Bypass diode
**T_{lead} method vs V_f-T_j method**

From our experiment,

As for Diode T_j, the difference was confirmed in "**V_f-T_j method**" and "**T_{lead} method**".

→ with experimental data on the next page.
## Test sample ; J-box-B-2

### [Chamber temp. ; 75℃ ]

<table>
<thead>
<tr>
<th>If</th>
<th>Left diode</th>
<th>Center diode</th>
<th>Right diode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tlead, ℃</td>
<td>Vf-Tj, ℃</td>
<td>Tlead, ℃</td>
</tr>
<tr>
<td>9A</td>
<td>158.1</td>
<td>160.1</td>
<td>165.0</td>
</tr>
<tr>
<td>11A</td>
<td>175.2</td>
<td>178.7</td>
<td>183.4</td>
</tr>
<tr>
<td>12A</td>
<td>183.5</td>
<td>187.5</td>
<td>192.4</td>
</tr>
<tr>
<td>13A</td>
<td>192.0</td>
<td>195.5</td>
<td>201.2</td>
</tr>
</tbody>
</table>

### [Chamber temp. ; 90℃ ]

<table>
<thead>
<tr>
<th>If</th>
<th>Left diode</th>
<th>Center diode</th>
<th>Right diode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tlead, ℃</td>
<td>Vf-Tj, ℃</td>
<td>Tlead, ℃</td>
</tr>
<tr>
<td>9A</td>
<td>168.8</td>
<td>171</td>
<td>175.2</td>
</tr>
<tr>
<td>11A</td>
<td>185.4</td>
<td>189.2</td>
<td>192.8</td>
</tr>
<tr>
<td>12A</td>
<td>193.7</td>
<td>197.2</td>
<td>201.9</td>
</tr>
<tr>
<td>13A</td>
<td>201.7</td>
<td>205.3</td>
<td>210.4</td>
</tr>
</tbody>
</table>

### Notes

1. Tlead ; Tj by "Tlead method"
   
   \[ Tj = \text{Tlead} + (\text{Rth} \times \text{Vf} \times \text{If}) \]

   \( \text{Rth} = 2.5^\circ C/W \) provided by diode maker

2. Vf-Tj ; Tj by "Vf-Tj method"

   \[ \text{in accordance with "IEC61646 Ed.2 10.18 Bypass diode thermal test / Procedure 2"} \]

---

**Why always**

\[ \text{Tlead} < \text{Vf-Tj} \]?
The correct Tj cannot be obtained by Tlead method. Because, the thermal resistance (Rth) could vary.

\[ Tj = T\text{lead} + (Rth \times I_f \times V_f) \]

The reason that thermal resistance varies is as follows; there is a difference in heat radiation conditions because diodes are installed in various J-box.

→ We are now measuring in order to obtain the support data.
Heat flow from Diode chip

\[ \text{Rc-1} < \text{Ra-1} << \text{Rb-1} \]

- **Cc**: heat flow on the cathode side
- **Ca**: heat flow on the anode side
- **Cb**: heat flow on the diode body

\[ P = V_f \times I_f \]

\[ T_j = T_{\text{lead}} + V_f \times I_f \times C_c \times R_{\text{th}} \rightarrow \text{real } R_{\text{th}} \rightarrow \text{apparent } R_{\text{th}} \]

Heat flow varies with the radiation conditions !!!!
Vf – Tj method

• Once Vf-Tj relation is obtained, Tj is easily decided from the value of Vf. Vf-Tj relation can be acquired by measuring the temperature of the lead and the voltage across the diode in thermal equilibrium condition.
Results of the study -2 (1/2)

From this experiment, the difference was confirmed in Vf-Tj method and Tlead method as for Tj of diode.

Regarding the thermal resistance (Rth) by Tlead method, Rth is provided by Diode maker.

When it is assembled into the J-box, an apparent Rth will vary because of the influence of wiring left and right side diodes, including Heat-sink.

\[
Tj = Tlead + (Rth \times If \times Vf) 
\]
Results of the study -2 (2/2)

Therefore, we should use the Vf-Tj method in accordance with "paragraph 10.18 Bypass diode thermal test / procedure 2 specified in IEC61646".

In order to continue accumulating technical data for Tj of diodes, we would like to propose a Vf-Tj method.
Next activities

1. Establishment of a method of thermal design verification test for J-box, and preparation of a draft standard

2. Development and manufacturing of thermal runaway test equipment

3. Suggestions for improvement of Diode Tj measurement method

4. In order to discuss the rating system, we have to confirm the changes of the characteristics of reverse bias after long term reliability test.
Thank you for your attention.

Acknowledgment;
I would like to thank those who have helped us i.e. SHARP, Onamba, Nihon Inter Electronics, Sanken Electronic and SOMA Optics.
Posters
**Problem Description**

- By-pass diodes generally get “activated” during a shading occurrence in the field.
- For a 72-cell module with 3 by-pass diodes per module, the diodes are typically of the Schottky type and rated 40 to 45 V for maximum reverse voltage and 10 to 20 A for maximum forward current and maximum junction temperature of 150°C.
- Right after a shading occurrence and while the diode is still at high temperature, the diode goes into the normal mode where it sees the operating voltage of 24 cells or roughly 8 to 12 V and that induces a reverse leakage current that can exceed the diode reverse current rating at that temperature with the destruction of that diode most likely in the open mode, although shorted diodes have also been seen.
- We developed a very simple method to test diodes in a j-box or individually in the lab without the need for a sophisticated thermal chamber.

**Simple Test Procedure**

- 30 A 60 V power supply
- Thermo-couples and Fluke meter
- Connect diodes in forward mode and pass 12 to 15 A (note that the central diode always heats up faster)
- Wait until diodes temperature reaches 150°C
- Quickly reverse polarities and apply 10V per diode while reading the reverse current
- High current diodes fail quickly in a “run-away” mode; i.e. the hotter they get the more current they pass and so forth until the junction melts
- Lower current diodes cool down and stabilize safely at relatively low current.
- Tests were also done on individual diodes as well, outside the j-box with similar results

**High Reverse Current Diode**

- Vr = 10V or 25% or Vrmax
- Ir is then 700 mA at 150°C
- P reverse is 7 W
- Diode exceeds 200°C and fails within seconds in the open mode (most of the time)
- A dozen diodes were tested under these conditions and all failed open

**Low Reverse Current Diode**

- Vr = 10V or 25% or Vrmax
- Ir is then 20 mA
- P reverse is 0.2 W
- Diode cools down to less than 100°C within seconds and further down
- No problem with this type of diode

**Standards and Certification**

- Field failures of by-pass diodes are most concerning when the diode(s) fail open due to shading conditions as the upcoming shading incident will undermine the cell(s) involved and may lead to cell(s) failure and other related safety problems
- An official test procedure needs to be incorporated into the international standards (performance, reliability and safety) and pass/fail criteria included
- At a minimum, choose the diodes that have the appropriate reverse characteristics
Introduction

Bypass diodes are a standard addition to PV (photovoltaic) modules. The bypass diodes' function is to eliminate the reverse bias during photovoltaic (PV) cells in a module in shade. The shaded cells and photovoltaic cells in segments of the module would not be able to generate electricity and may become hot. If the module sustains a hot spot condition, it may cause the cells to operate at elevated temperatures which could lower the current handling and even cause fire if the light hitting the surface of the PV cells in a module is not strong enough. The thermal reliability of bypass diodes is especially important for the solar module, because if the bypass diodes are not able to operate or perform under hot spot condition.

Data monitoring

Test samples (shown in fig. 1 and fig. 2) present criteria of IEC 61215. The diode function is to eliminate the reverse bias hot-spot phenomena which can damage PV cells when the cell temperature is too high. The diode performance is stable if the diode is reverse-biased with low diode temperature. Diode case temperature is very close to chamber temperature during the testing. The high temperature combined with thermal cycling will cause the diodes to not perform well in a module.

Results

Test 1

High temperature endurance testing with forward biased current was applied to bypass diodes to assess diodes operating performance under long-term hot spot condition. Diodes case temperature is very close to chamber temperature during the testing.

Test 2

Thermal cycle plus reverse bias endurance testing was applied to bypass diodes to assess diodes reliability under thermal cycling caused by ambient temperature change combined with hot spot current flow.

Conclusions

To assess diodes thermal reliability of PV modules, three indoor tests were designed to simulate 3 types of diode operating condition. These tests were performed on diodes to assess diodes operating performance under hot spot condition. After these tests, the diodes were operated under different temperature and bias conditions. The diode performance is stable if the diode is reverse-biased with low diode temperature.

Acknowledgment

The authors would like to thank Dr. Stacey and Dr. Robusto of Intertek for the field work in photovoltaic and certification test.

References


The thermal reliability study of bypass diodes in photovoltaic modules

The thermal reliability study of bypass diodes in photovoltaic modules

Fig. 1. Junction box sample for testing

Fig. 2. Assenbling testing samples in the chamber

Fig. 3. Junction box sample for testing

Fig. 4. Diodes forward voltage of 3 hours during the high temperature testing

Fig. 5. Chamber temperature and diodes case temperature of Box 1 during diodes thermal cycle plus forward bias testing

Fig. 6. Reverse characteristics of diodes 2-2 (Q2) and diode 3-2 (Z2) before and after diodes thermal cycle plus reverse bias testing

Fig. 7. Chamber temperature and diodes case temperature of Box 3 during diodes thermal cycle plus reverse bias testing