DNV Renewables Services

Global impact for a safe and sustainable future

Jeff Newmiller
History: More than 145 years of managing risk

- DNV (Det Norske Veritas) was established in 1864 in Norway
- DNV is a leading international provider of services for managing risk
- DNV is a foundation and reinvests all profits in services, research and development
- Shipping → Maritime Wind → Renewable Energy → BEW Engineering
OVERVIEW

• Our perspective
 • Begin with client goal: energy production
 • Identify root causes of failures to meet goal in historical record
 • Review evidence that root causes have been addressed in new projects

• Categories of root causes
 • Capacity
 • Weather
 • Reliability

• Potential benefit of utility-scale test projects
 • Wide access to results
CLIENT GOALS : QUESTIONS

• How much energy will this system produce? (income)
 • First year?
 • Over time?

• How much will O&M cost? (expense)

• What are the risks for this project? (expense)
 • Performance
 • Reliability
 • Safety
 • Schedule

• Is the project proceeding according to plan? (income)
 • Plans are complete and correct?
 • Built according to plans?
 • Begin producing energy on schedule?
ROOT CAUSES: PERFORMANCE

- Energy production
 - Efficiency (Power Rating?)
 - At test conditions vs. real world variety of conditions
 - Irradiance Level
 - Temperature (ambient→module)
 - Spectrum
 - Exposure history
 - Sample-to-sample variation
 - In general, requires a combination of field data to identify and lab data to model
ROOT CAUSES: WEATHER

- More irradiance = more generation
- Interaction of weather with equipment yields energy
- BUT
 - Instrument accuracy?
 - Diffuse measurement?
 - Spectrum?
 - Length of history?

<table>
<thead>
<tr>
<th>Year</th>
<th>Annual Average Irradiation (kWh/m²/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1970</td>
<td>3</td>
</tr>
<tr>
<td>1980</td>
<td>4</td>
</tr>
<tr>
<td>1990</td>
<td>5</td>
</tr>
<tr>
<td>2000</td>
<td>6</td>
</tr>
</tbody>
</table>

Source
- CIMIS Camino
- Meteonorm (Site)
- NSRDB Sacramento
- NSRDB Sacramento Metro
- Prospector (Site)
ROOT CAUSES: MATERIALS RELIABILITY

- Stability
 - Photovoltaic Material
- Stability and Robustness
 - Encapsulation
 - Breach
 - Change in reflection / transmission / absorption properties
- Stability and Robustness
 - Structure
 - For some technologies, custom structure is essential
 - Electrical Infrastructure
 - Connector failure rates
 - Grounding Corrosion
 - Copper/Aluminum
EVIDENCE: QUALIFICATION TESTING

- Is not “reliability testing” because it represents “minimum exposure”
 - IEC 61215 Mono/Poly Silicon
 - IEC 61646 Thin-film
- Bankability
 - Extended cycle test results
 - Fielded equipment failure rates
- Temperature cycling
- Damp-heat
- Hot-spot
- Reverse current
- Mechanical tests
EVIDENCE: LABORATORY PERFORMANCE

- **Parameters**
 - STC
 - Varying Temperature
 - Varying Irradiance
 - Varying Diffuse Fraction
 - Before and After Exposures
 - Light/Dark
 - Hot/Cold
 - Electrical Polarity

- **Statistics**
 - Typical qualification and safety tests only determine performance approximately, and on at most a few samples
 - What is production stability for millions of samples?
EVIDENCE: SAFETY TESTING

- NRTL Listing is norm for US demand-side generation (UL1703)
- For generation-only facilities, IEC standards may be more appropriate
- Lessons learned from NEC should not be forgotten
- Records of acceptance of installed systems by (more than one) local AHJ
EVIDENCE: FIELD PERFORMANCE

• System Measurements
 • AC Power/Voltage
 • 60Hz
 • DC Voltage/Current /Power
 • Rapid sampling (1 sec)
 • Short Aggregation (1-5min)
• Special Tests
 • String Current “Sign-Of-Life”
 • IV Curves
 • Periodic Flash IV Testing

• Environmental
 • Irradiance
 • GHI – broadband
 • DHI – BB or Silicon Detector
 • POA – BB and SD and Reference Cell
 • Spectrum
 • Temperature
 • Free Air (“Ambient”)
 • Module
 • Wind
 • Free Air
EVIDENCE: FIELD PERFORMANCE

- **First year of performance**
 - Basic measure of project viability
 - New technologies may have complicated modeling requirements: confirm models
 - Availability

- **Degradation**
 - Small effect builds over time
 - Difficult to confirm in less than 5 years

- **Ground-measured weather data**
 - High quality meteorological data is necessary for evaluation
 - Value of recorded data will be high
 - Future projects located near the test sites
 - Calibration of resource models

- **Soiling**
 - Site-dependent
 - Technology impact
EVIDENCE: INSTALLATION/O&M

- Familiar technologies
 - Cheaper installation
 - Cheaper maintenance
 - Well-understood spares management
 - Shorter downtime
- Mitigation
 - Similarity to existing tech
 - Training
 - Clear documentation
- Evidence
 - Installed systems
 - Testimonials by construction teams

Graph:
- Current (A) vs. Voltage (V)
- Lines: I, Ibypassed, Iblocked

- Current (A):
 - 8
 - 3
 - -2

- Voltage (V):
 - -10
 - 10
 - 30
 - 50
EVIDENCE: MUTATION OF PROCESSES

- Common response when problems arise
 - “We don’t build it that way anymore.”
- Common pitch when selling newest model
 - “We have built lots of these”

- Problem
 - How to confirm that changes introduced to address problems have not reduced the advantages of the old product?

- Possible solution
 - Document mfr processes of fielded products
 - Hold documentation in escrow
 - Later compare processes of new product under NDA
CONCLUSION

• New technology that fits existing physical profiles (e.g. framed flat plate) mostly needs performance, stability and reliability evidence (installation years)

• New tech that alters physical profile (e.g. concentrators, flexible substrate) also needs demo of constructability and O&M

• Field installations have limited environmental profile
 • Multiple locations needed to address Desert, Agricultural, Humidity, Sub-Freezing profiles