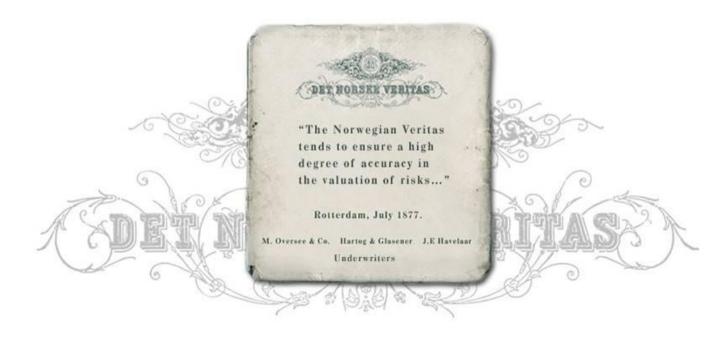



DNV Renewables Services

Global impact for a safe and sustainable future

Jeff Newmiller



VALIDATION INFORMATION FOR PV POWER SYSTEM PROJECT REVIEW

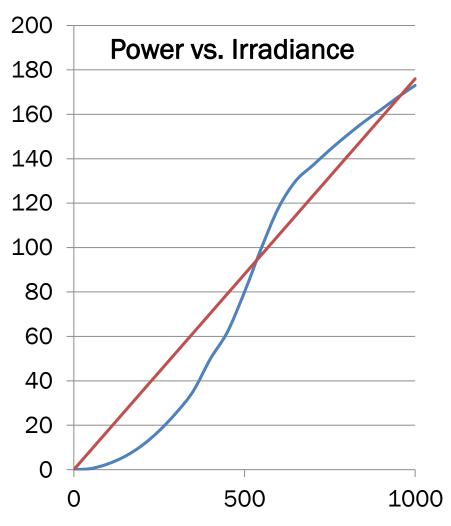
Presented by: Jeff Newmiller

History: More than 145 years of managing risk

- DNV (Det Norske Veritas) was established in 1864 in Norway
- DNV is a leading international provider of services for managing risk
- DNV is a foundation and reinvests all profits in services, research and development
- Shipping → Maritime Wind → Renewable Energy → BEW Engineering

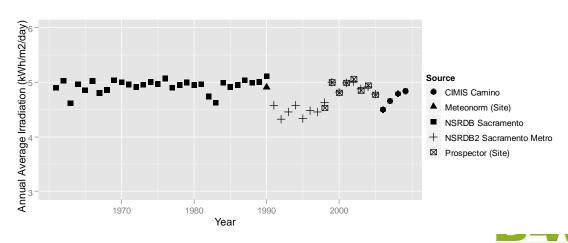
OVERVIEW

- Our perspective
 - Begin with client goal: energy production
 - Identify root causes of failures to meet goal in historical record
 - Review evidence that root causes have been addressed in new projects
- Categories of root causes
 - Capacity
 - Weather
 - Reliability
- Potential benefit of utility-scale test projects
 - Wide access to results


CLIENT GOALS: QUESTIONS

- How much energy will this system produce? (income)
 - First year?
 - Over time?
- How much will O&M cost? (expense)
- What are the risks for this project? (expense)
 - Performance
 - Reliability
 - Safety
 - Schedule
- Is the project proceeding according to plan? (income)
 - Plans are complete and correct?
 - Built according to plans?
 - Begin producing energy on schedule?

ROOT CAUSES: PERFORMANCE


- Energy production
 - Efficiency (Power Rating?)
 - At test conditions vs. real world variety of conditions
 - Irradiance Level
 - Temperature (ambient→module)
 - Spectrum
 - Exposure history
 - Sample-to-sample variation
 - In general, requires a combination of field data to identify and lab data to model

ROOT CAUSES: WEATHER

- More irradiance = more generation
- Interaction of weather with equipment yields energy
- BUT
 - Instrument accuracy?
 - Diffuse measurement?
 - Spectrum?
 - Length of history?

a DNV company

ROOT CAUSES: MATERIALS RELIABILITY

- Stability
 - Photovoltaic Material
- Stability and Robustness
 - Encapsulation
 - Breach
 - Change in reflection / transmission / absorption properties

- Stability and Robustness
 - Structure
 - For some technologies, custom structure is essential
 - Electrical Infrastructure
 - Connector failure rates
 - Grounding Corrosion
 - Copper/Aluminum

EVIDENCE: QUALIFICATION TESTING

- Is not "reliability testing" because it represents "minimum exposure"
 - IEC 61215 Mono/Poly Silicon
 - IEC 61646 Thin-film
- Bankability
 - Extended cycle test results
 - Fielded equipment failure rates

- Temperature cycling
- Damp-heat
- Hot-spot
- Reverse current
- Mechanical tests

EVIDENCE: LABORATORY PERFORMANCE

- Parameters
 - STC
 - Varying Temperature
 - Varying Irradiance
 - Varying Diffuse Fraction
 - Before and After Exposures
 - Light/Dark
 - Hot/Cold
 - Electrical Polarity

- Statistics
 - Typical qualification and safety tests only determine performance approximately, and on at most a few samples
 - What is production stability for millions of samples?

EVIDENCE: SAFETY TESTING

- NRTL Listing is norm for US demand-side generation (UL1703)
- For generation-only facilities, IEC standards may be more appropriate
- Lessons learned from NEC should not be forgotten

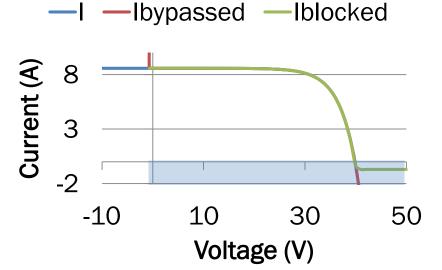
 Records of acceptance of installed systems by (more than one) local AHJ

EVIDENCE: FIELD PERFORMANCE

- System Measurements
 - AC Power/Voltage
 - 60Hz
 - DC Voltage/Current / Power
 - Rapid sampling (1 sec)
 - Short Aggregation (1-5min)
 - Special Tests
 - String Current "Sign-Of-Life"
 - IV Curves
 - Periodic Flash IV Testing

- Environmental
 - Irradiance
 - GHI broadband
 - DHI BB or Silicon Detector
 - POA BB and SD and Reference Cell
 - Spectrum
 - Temperature
 - Free Air ("Ambient")
 - Module
 - Wind
 - Free Air

EVIDENCE: FIELD PERFORMANCE


- First year of performance
 - Basic measure of project viability
 - New technologies may have complicated modeling requirements: confirm models
 - Availability
- Degradation
 - Small effect builds over time
 - Difficult to confirm in less than 5 years

- Ground-measured weather data
 - High quality meteorological data is necessary for evaluation
 - Value of recorded data will be high
 - Future projects located near the test sites
 - Calibration of resource models
- Soiling
 - Site-dependent
 - Technology impact

EVIDENCE: INSTALLATION/O&M

- Familiar technologies
 - Cheaper installation
 - Cheaper maintenance
 - Well-understood spares management
 - Shorter downtime

- Mitigation
 - Similarity to existing tech
 - Training
 - Clear documentation
- Evidence
 - Installed systems
 - Testimonials by construction teams

EVIDENCE: MUTATION OF PROCESSES

- Common response when problems arise
 - "We don't build it that way anymore."
- Common pitch when selling newest model
 - "We have built lots of these"

- Problem
 - How to confirm that changes introduced to address problems have not reduced the advantages of the old product?
- Possible solution
 - Document mfr processes of fielded products
 - Hold documentation in escrow
 - Later compare processes of new product under NDA

CONCLUSION

- New technology that fits existing physical profiles (e.g. framed flat plate) mostly needs performance, stability and reliability evidence (installation years)
- New tech that alters physical profile (e.g. concentrators, flexible substrate) also needs demo of constructability and O&M
- Field installations have limited environmental profile
 - Multiple locations needed to address Desert, Agricultural, Humidity, Sub-Freezing profiles

