Metallic Composites Phase-Change Materials for High-Temperature Thermal Energy Storage

Principal Investigator: Gang Chen
Massachusetts Institute of Technology, Cambridge, MA 02139
Email: gchen2@mit.edu
http://web.mit.edu/nanoengineering

Co-Principal Investigators:
Zhifeng Ren, University of Houston
Keivan Esfarjani, Rutgers University

ARPA-E HEATS, Award: DE-AR0000181, Seedling Project
Start Date: 02/20/2012
Core Team

Professor Gang Chen, Principal investigator
MIT

Professor Zhifeng Ren, Co-Principal Investigator
U. Houston

Dr. Keivan Esfarjani, Co-Principal Investigator
Rutgers University

Dr. Xiaobo Li
Thermal Scientist

Sohae Kim
Heat Transfer Scientist

Hengzhi Wang
Materials Scientist

Hui Wang
Materials Scientist
Background – Thermal Storage

Concentrated Solar Power

Affected by weather and night-time

Proposed Solution:
High temperature, high latent heat
thermal storage materials

Nuclear Power Plant

Lack peaking power capacity

Source: http://www.aaenvironment.com/GreenNuclear.htm
Project Goals

- High temperature eutectic PCM \((550-900^\circ c) \)
- High latent heat PCM \((> 400kJ/kg) \)
- High thermal conductivity \((> 10W/mK) \)

Strategies

- Nanoparticle/ternary increase latent heat \((50\%) \)
- Earth abundant materials
- Low cost materials
Direction for Increasing Latent Heat

High latent heat metallic composites with high thermal conductivity

Two Phase Separated in Solid

Latent Heat (Enthalpy of Fusion H)

Two Phase Mixed in Liquid

$\Delta H = T \Delta S$

More Configuration

-> Configurational Entropy S
Eutectic composition: phase separation for maximum mixing entropy

Eutectic Alloys as PCM

Typical Binary Phase Diagram with Eutectic Composition

Microstructure of Al-12Si eutectic alloy

M.M. Makhlof, H.V. Guthy, J. Light Metals 1, 2001
Understanding of Latent Heat

\[
\Delta S = \Delta S_{\text{mixing}} + \Delta S_{c_p} + (1 - x_e) \frac{\Delta h_{f,A}}{T_{m,A}} + x_e \frac{\Delta h_{f,B}}{T_{m,B}}
\]

Mixing entropy Sensible heat Latent heat from each elements
Latent Heat from Mixing Entropy

Ideal Mixing:

$$\Delta s_{\text{mixing}} = -R \sum x_i \ln x_i$$

At 800K, with atomic mass of 30 g/mol, latent heat from mixing:
- Binary alloy: 156 kJ/kg
- Ternary alloy: 245 kJ/kg
Material Selection – Latent Heat

\[\frac{\Delta H}{T_m} (\text{kJ/kg.K}) \]
Material Selection – Vapor Pressure, Price

<table>
<thead>
<tr>
<th>Instable Elements</th>
<th>Stable Elements for Melting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vapor Pressure</td>
<td>= 100 kPa</td>
</tr>
<tr>
<td>Li @ 722 C</td>
<td>B @ 2075 C</td>
</tr>
<tr>
<td>Na @ 880 C</td>
<td>Fe @ 1455 C</td>
</tr>
<tr>
<td>Mg @ 1088 C</td>
<td>Al @ 1209 C</td>
</tr>
<tr>
<td>P @ 276 C</td>
<td>Co @ 1517 C</td>
</tr>
<tr>
<td>S @ 444 C</td>
<td>Si @ 1635 C</td>
</tr>
<tr>
<td>K @ 756 C</td>
<td>Ni @ 1510 C</td>
</tr>
<tr>
<td>Ca @ 1482 C</td>
<td>Ti @ 1709 C</td>
</tr>
<tr>
<td>Zn @ 912 C</td>
<td>V @ 1828 C</td>
</tr>
<tr>
<td>Pb @ 1754 C</td>
<td>Ag @ 1010 C</td>
</tr>
<tr>
<td>Sb @ 1585 C</td>
<td>Cr @ 1383 C</td>
</tr>
<tr>
<td></td>
<td>Mo @ 2469 C</td>
</tr>
<tr>
<td></td>
<td>Mn @ 955 C</td>
</tr>
<tr>
<td></td>
<td>Sn @ 1224 C</td>
</tr>
<tr>
<td></td>
<td>C - with 10 Pa @ 2566 C</td>
</tr>
</tbody>
</table>

Vapor Pressure = 1 Pa

Price ($/lb)

- Ti
- Bi
- Sn
- Ni
- Sb
- Cu
- Mg
- Al
- Si, Zn, Pb
- Fe
Invariant Temperature of Binary Alloys

<table>
<thead>
<tr>
<th>B</th>
<th>C</th>
<th>Al</th>
<th>Si</th>
<th>Sc</th>
<th>Ti</th>
<th>V</th>
<th>Cr</th>
<th>Mn</th>
<th>Fe</th>
<th>Co</th>
<th>Ni</th>
<th>Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>2075</td>
<td>2435</td>
<td>---</td>
<td>1362</td>
<td>1277</td>
<td>1540</td>
<td>1605</td>
<td>1142</td>
<td>1175</td>
<td>1133</td>
<td>1018</td>
<td>1013</td>
<td></td>
</tr>
<tr>
<td>2460</td>
<td>3550</td>
<td>---</td>
<td>---</td>
<td>1722</td>
<td>1647</td>
<td>1530</td>
<td>1227</td>
<td>1153</td>
<td>1325</td>
<td>1326</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>2435</td>
<td>3550</td>
<td>---</td>
<td>660</td>
<td>575</td>
<td>1206</td>
<td>1530</td>
<td>1227</td>
<td>1153</td>
<td>1325</td>
<td>1326</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>2460</td>
<td>---</td>
<td>660</td>
<td>575</td>
<td>1206</td>
<td>1530</td>
<td>1227</td>
<td>1153</td>
<td>1325</td>
<td>1326</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1206</td>
<td>1201</td>
<td>1235</td>
<td>1246</td>
<td>1301</td>
<td>1425</td>
<td>1206</td>
<td>1224</td>
<td>1184</td>
<td>1242</td>
<td>642</td>
<td>548</td>
<td></td>
</tr>
<tr>
<td>1285</td>
<td></td>
</tr>
<tr>
<td>1408</td>
<td></td>
</tr>
<tr>
<td>1395</td>
<td></td>
</tr>
</tbody>
</table>

Invariant means the melting temperature does not change during phase change

Red: eutectic

Green: compound

Black: element

---: no invariant temperature

NA: phase diagram not identified
Latent Heat of Fusion ~ Melting T

Data based on literature (not verified)
Materials Fabrication Facilities
Materials Characterization Facilities
Al-12Si (at%) Eutectic Alloy

Hot-Press: Pressure: 80 Mpa, Temperature: 577 °C

Diameter: 12.7 mm
Thickness: 1.5-2.8 mm
Latent Heat of Al-12Si Alloy

<table>
<thead>
<tr>
<th></th>
<th>Melting T (°C)</th>
<th>Latent Heat (kJ/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured value</td>
<td>578.3</td>
<td>554.9</td>
</tr>
<tr>
<td>Reference value</td>
<td>576</td>
<td>560</td>
</tr>
</tbody>
</table>

![DSC Graph](image)

- Onset: 578.3°C
- Area: 554.9 J/g
Estimation of Al-12.2Si (at%)

Estimated Latent Heat: 511kJ/kg

- Melting of Al: 318kJ/kg
- Melting of Si: 114kJ/kg
- Ideal mixing: 79kJ/kg
- Discrepancy from Exp.: 44kJ/kg

Possible causes:
- Sensible Heat?
- Non-ideal Mixing?
Thermal Conductivity of Al-12Si Alloy

Thermal Conductivity: 122 W/mK (500 °C, Cp from literature)

Thermal diffusivity of eutectic Al-12Si alloy (LFA 457 MicroFlash, Netzsch)
Hypereutectic Al-28Si Alloys

- **Temperature range:** 576.8 to 815 °C
- **Latent heat:** 753.2 kJ/kg
- 448 kJ from eutectic alloy
- 305 kJ from additional Si and sensible heat

Graph showing:
- **Area:** 448.1 J/g (main peak only)
- **Area:** 753.2 J/g (whole area)
Ternary Phase Diagram
Ternary Alloy # 1

Ternary alloy A-B-C

Latent heat: 867 kJ/kg
Estimated: 964 kJ/kg

Contribution from:
Mixing entropy: 304 kJ/kg
Material A: 187 kJ/kg
Material B: 433 kJ/kg
Material C: 41 kJ/kg

1/3 from mixing entropy!
Summary

• Systematically investigated metallic PCMs from unary to ternary alloys.
• Binary 87.8Al-12.2Si (at%) alloy: 554.9 kJ/kg at 578.3 °C
• Ternary alloy #1: 865 kJ/kg around 850 °C
• Thermal conductivity > 100 W/m.K
Future Directions

• Further improving materials
 • Quaternary alloys and eutectics
 • Compounds + eutectics
 • Additives

• Packaging of materials

• Systems and applications