Low-Cost Light Weight Thin Film Solar Concentrators

PI: Gani B. Ganapathi (JPL/Caltech)
Other Contributors:
L’Garde: Art Palisoc, Gyula Greschik, Koorosh Gidanian
JPL: Bill Nesmith, Andrew Kindler

SunShot CSP Program Review 2013
Hilton Phoenix East/Mesa l Phoenix, AZ l April 23-25, 2013

Copyright 2013. All rights reserved.
Project Objectives

• Develop a concentrator to meet DOE’s cost goal of 6¢/kWh while meeting all stringent technical performance requirements.

• Project leverages extensive space/terrestrial experience by JPL and L’Garde to develop
 – A low-cost concentrator with the following key features:
 • Metallized reflective thin film material with high reflectivity (>93%) with polyurethane foam backing
 • Single mold polyurethane backing fabrication enables low cost high production manufacturing
 • Ease of panel installation and removal enables repairs and results in a low total life cycle cost
 • Approach applicable to parabolic dishes, troughs, and heliostats
 • Technology could be applicable as a retrofit on existing facilities or for new installations

• Optimized overall system to meet $75/m² goal
 – Low cost actuators, shared resources, field installation approach achieved through design trades
NASA/JPL

- JPL is a NASA FFRDC operated by Caltech
- 5000+ in a 170 acre plot nestled in Pasadena’s San Gabriel Mountains
- Premier organization known for planetary exploration
 - Best known for its recent Mars Science Laboratory (Curiosity)
JPL Relevant Experience

- JPL has been deploying parabolic dish RF antennas world-wide for over 55 years (January 1958) and conducted the supporting wind tunnel testing
 - Currently operating three 70-m dia. parabolic dish antennas around the world along with 34, 26 and 9-m dia. antennas

 ![Parabolic Dish Antenna](image)

- In the 70’s and 80’s, JPL spun off parabolic dish RF antennas into multiple 11-m dia. dishes with JPL-developed silvered glass on glass foam facets
- Demonstration power plant in Osage City, KS in the 80’s using JPL technologies
L’Garde

• Small company in Irvine, CA
• Knowledgeable in both lightweight/inflatable structures and reflective thin film technologies
 – Demonstrated an inflatable parabolic dish antenna in space
 – Conducted ground test of inflatable parabolic dish reflectors

L’Garde 3 meter diameter thin film concentrator

Inflatable antenna experiment that flew on orbit in May of 1996.
Major Project Phases and Milestones

- Project will be accomplished in 3 phases over three years

<table>
<thead>
<tr>
<th>Phase</th>
<th>Key Milestones and Deliverables</th>
</tr>
</thead>
</table>
| Phase 1 (DESIGN & RISK REDUCTION) | • Material selection & fab processes validated
 • System trades to optimize overall system |
| Phase 2 (DETAILED DESIGN & FAB) | • Facet and back support development
 • Mechanical detailed design |
| Phase 3 (COLLECTOR SYSTEM BUILD & TEST) | • Integrate 4 kW_t concentrator system
 • Validation testing |
Budget Period Summary

• Phase 1 activities for this budget period are grouped under Facet Design/Build and System Studies

• Facet Design and Build
 - Task 1.1: Facet Design Studies
 - Task 1.2: Reliability Studies
 - Task 1.3: Alpha prototype concentrator build

• System Design/Analysis (Task 1.4)
 - Subtask 1.4.1: Performance optimization
 - Subtask 1.4.2: Drive mechanisms and controls
 - Subtask 1.4.3: Mechanical structure design
 - Subtask 1.4.4: Concentrator thermal modeling
 - Subtask 1.4.5: Manufacturing plan
Overall project status

• Late project start – delayed from Oct ‘12 to Jan ’13 due to contractual discussions
 – JPL started work on small amount of risk money
 – Full funding associated with project on 2/28/13
• L’Garde on contract to JPL
• Both teams are charging ahead full steam now and making rapid progress
Task 1.1.1: Facet Design Studies

• Studies driven by the goal to infuse low-cost high performance technologies into current and future CSP applications
 – heliostats (large and small), parabolic trough and parabolic dishes
• Current studies on heliostat designs are looking into design interactions of the mirror module (film and substrate) and support structure
L1 (Large 1) Design

- Design features
 - Facets “give” in winds > 35 mph and then self re-latch
 - Guy wires in tension to facilitate focusing and low mass structure
 - A single common drive stows at any altitude angle or elevation with reflective surface either up or down
 - Pointing up (high) for rain cleaning
 - Pointing down (low) for stow during high winds/hail
 - A single standard post mounted azimuth drive

NASA New Technology Report # 49116
L1 Animation

- L1 stow animation
- L1 facet “give” in winds
Other Design Trades

• Within heliostats we are looking at other options
 – Heliostat cost vs. system performance driving operations, geometry and material selection
 – Space frame derivatives to reduce structural requirements
 – Gradual degradation of heliostats in winds
Task 1.1.2: Structural foam

• We are evaluating several (6-7) candidate closed cell foam materials
 ▪ Accuracy of surface that can be produced with the various materials and associated processes
 ▪ Coefficient of thermal expansion (CTE) match with film
 ▪ Bonding issues and how they influence the fabrication process

• Capitalizing on prior activities at JPL/L’Garde in solar thermal and also from NREL/SNL literature
Task 1.1.3: Thin Reflective Film

- Identified 2 primary candidates – ReflecTech and 3M Solar Mirror Film 1100
 - Samples have been procured; will be tested shortly
- Identified 3 secondary candidates and are in the process of evaluating them based on available literature
Other Supporting Activities

- Gathered standards for optical and structural testing of facets
- Participated in online conferences with industry
- Visited industry suppliers like Rocketdyne
- Obtained codes DELSOL 3, SolTrace
- Discussions with NREL and Sandia on polymer reflective surfaces, surface measurement accuracy
- Gathering information on traditional and novel heliostat power tower companies and their designs
- Developed simple models for wind deflection impact on surface slope errors
Summary

• Large heliostat baseline design developed
 – Further trades on-going
• Baseline reflective material selected and samples obtained for further testing
• Identified 6 candidate foam materials for further evaluation