Thermochemical Energy Storage

Overview on German, and European R&D Programs and the work carried out at the German Aerospace Center DLR

Dr. Christian Sattler
christian.sattler@dlr.de

Dr. Antje Wörner
antje.woerner@dlr.de
Contents

- Short Introduction of the DLR
 - Energy Program
- Thermochemical Storage
 - Strategic basis: Germany and European Union
 - Processes
 - CaO/Ca(OH)$_2$
 - Metal oxides (restructure)
 - Sulfur
- Conclusion
DLR
German Aerospace Center

- Research Institution
- Space Agency
- Project Management Agency
Research Areas

- Aeronautics
- Space Research and Technology
- Transport
- Energy
- Space Administration
- Project Management Agency
Locations and employees

7000 employees across 32 institutes and facilities at 16 sites.

Permanent delegation at the European Solar Test Centre Plataforma Solar de Almería, Spain
Total income 2011 – Research, operations and management tasks (excluding trustee funding from the Space Administration / DLR Project Management Agency): € 796 Mio.
Participation in the Helmholtz Association

- Success in obtaining program-oriented funding
- Added value from support of the Helmholtz Association
- Helping to shape the organisational development process
National and International Networking

Customers and partners: Governments and ministries, agencies and organisations, industry and commerce, science and research

<table>
<thead>
<tr>
<th>World</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Europe</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Germany</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Energy
DLR Energy

DLR Energy Research concentrates on:
- CO$_2$ avoidance by efficiency optimisation and renewable energies
- synergies within the DLR
- major research specific themes that are relevant to the energy economy
Energy Program Themes

- Efficient and environmentally compatible fossil-fuel power stations
 (turbo machines, combustion chambers, heat exchangers)

- Solar thermal power plant technology, solar fuels
 - Institute of Solar Research

- Thermal and chemical energy storage, High and low temperature fuel cells, Systems analysis and technology assessment
 - Institute of Technical Thermodynamics
Strategic Basis
Political view: SET-Plan (2007)
European Strategic Plan for Energy Technology

- **Goals of the EU until 2020 (20/20/20)**
 - 20% higher energy efficiency
 - 20% less GHG emission
 - 20% renewable energy

- **Goal of the EU until 2050:**
 - 80% less CO$_2$ emissions than in 1990

- Actions in the field of energy efficiency, codes and standards, funding mechanisms, and the charging of carbon emissions necessary

- Significant research effort for the development of a new generation of CO$_2$ emission free energy technologies, like
 - Offshore-Wind
 - **Solar**
 - 2nd generation Biomass
Programs in Europe

- National Energy Research Programs in most of the European Countries (very different levels and aims)
- Joint Programs under the European Framework Programmes for Research and Technical Development (RFP)
 - Actual RFP is „FP7“ until the end of 2013 (few calls will be launched this year)
- 2014 – 2020 „HORIZON 2020“
 - Wider focus than RFP: It will combine all research and innovation funding currently provided through the RFP, the innovation related activities of the Competitiveness and Innovation Framework Programme (CIP) and the European Institute of Innovation and Technology (EIT).
HORIZON 2020

- Budget Issues! Negotiations are going on – Result is open,
- Proposals between € 40 bn and €110 bn
- Main Topics
 - Strengthen the EU’s position in science. European Research Council (ERC) Person related basic research (33%)
 - Strengthen industrial leadership in innovation (24%)
 - address major concerns shared by all Europeans such as climate change, developing sustainable transport and mobility, making renewable energy more affordable, ensuring food safety and security, or coping with the challenge of an ageing population (43%)
- In the energy sector storage will be a major topic
 - Workshops by the European Commission with experts and stakeholders prepared this in 2011
Programs in Germany

- 6th Energy Research Programme (3.5 billion euros for the period 2011-2014).

- The Programme focuses on key topics relating to the restructuring of Germany's energy supply, i.e.
 - renewable energies,
 - energy efficiency,
 - storage and grids.
Programs in Germany

- 6th Energy Research Programme
 - Federal Ministry for Economics and Technology (BMWi)
 - Energy Storage Program
 - Federal Ministry of the Environment (BMU)
 - CSP Program
 - Federal Ministry of Transportation (BMVBS)
 - NOW (National Organization for Hydrogen)
 - Federal Ministry of Education and Research (BMBF)
 - Energy Storage Program

- Basic Funding of the research institutions (e.g. Helmhotz by BMBF and BMWi)
- Programs of the federal states
Thermochemical Energy Storage

Work at DLR
Reversible Gas-Solid-Reactions

- High storage density
- Lossless long-term storage possible
- Possible heat transformation
- Large temperature range (RT to > 1000 °C)
- Detachment of storage capacity and thermal power
- Cost efficient storage materials

- Reactions:
 - Dehydration: \(\text{CaCl}_2 \cdot 6\text{H}_2\text{O} = \text{CaCl}_2 + 6\ \text{H}_2\text{O} \)
 - Metalhydroxide/Metaloxide: \(\text{Ca(OH)}_2 = \text{CaO} + \text{H}_2\text{O} \)
 - Redox cycles of Metaloxides: \(2\ \text{MnO}_2 = \text{Mn}_2\text{O}_3 + \frac{1}{2}\ \text{O}_2 \)
Requirements for TCS Storage System

- **Closed loop operation** requires storage of gaseous reactant
- **Open loop operation** possible for steam or oxygen reaction systems
- Transport of solid reactant enables **detachment of power from capacity**
- **Integration** of storage system with process important
Requirements for TCS Reaction System and Storage Material

- High enthalpy of reaction
- Complete reversibility and cycling stability
- Suitable thermodynamics and sufficient reaction kinetics
- Long-term stable and superior thermo-physical and mechanical properties

- High availability of material at low cost
- Non-toxicity of material
- Positive LCA

→ Amount of „useful“ cycles determines the amortization period:
 - Seasonal storage
 - Day / Night storage
 - Continuous operation (sorption system)
Key factors: Development of reactor systems
Process integration

Current activities on Gas-Solid Reactions for heat applications at DLR:
- Competence Center for Ceramics and Storage in Energy Research CeraStorE
- Development of reactor systems:
 - Concept of direct heat transfer
 - CaO/Ca(OH)$_2$
 - Metaloxide Redoxcycles
 - Sulfur Cycles
CeraStorE

Joint Research Facility by DLR’s Institutes of
- Material Research
 - Fiber ceramics, redox materials
- Solar Research
 - Solar fuels and reactor development
- Technical Thermodynamics
 - Thermal- and thermochemical storage
CaO/Ca(OH)$_2$ system

- Temperatur range: 400 – 600 °C
 - CSP plants
 - Bed with **low thermal conductivity**

CaO/Ca(OH)$_2$

- Principle successfully demonstrated in a 10 kW plant in the CeraStorE
TCSPower Project

- FP7 European project 2011 – 2015
- **Storage materials** with improved functionality in regard to reaction kinetics, thermo-physical and mechanical properties
- **Dynamic simulation tool** for the design of a TCS reactor with improved performance (heat and mass transfer, charging/discharging behaviour)
- Suitable **reactor concept** being experimentally proven and evaluated in laboratory scale
- Proof-of-principle **pilot-scale thermochemical reactor** (10 kW, 100 kWh)
- **Overall process concept** for the integration into the CSP plant,
- **Strategy for up-scaling** to commercial scale and **techno-economic evaluation** of thermochemical storage systems
Areas of Development

Reaction System
Storage Material

Thermochemical Storage System

System Integration

WP1

WP2

WP3

WP4 + WP5

WP6
Selected Reaction Systems

Calcium Hydroxide

\[
\text{Ca(OH)}_2 + \Delta H \leftrightarrow \text{CaO} + \text{H}_2\text{O}
\]

\[T_{eq} = 507^\circ\text{C at 1 bar}\]
\[\Delta H = 100 \text{ kJ/mol}\]
Storage density\(^*\) = 410 kWh/m\(^3\)

Manganese Oxide

\[
6 \text{ Mn}_2\text{O}_3 + \Delta H \leftrightarrow 4 \text{ Mn}_3\text{O}_4 + \text{O}_2
\]

\[T_{eq} = 980^\circ\text{C at 1 bar}\]
\[\Delta H = 31.8 \text{ kJ/mol}\]
Storage density\(^*\) = 126 kWh/m\(^3\)

\(^*\) open loop, bulk porosity \(\varepsilon = 0.5\)
RESTRUCTURE

- FP 7 European Project 2012 - 2016
- Redox Cycles with fixed structures: Honeycombs or foams
- Mixed-iron-oxides-based redox materials
- Demonstration of operation in the temperature range of a solar tower: 900-1500°C
- Demonstration of a solar pilot plant of 100 kW
- Identification of investment and operational cost of a 1.5MWe demo plant incorporating the particular TES system and comparison to the EU
- Presentation of a suitable strategy for the introduction of the technology into the market.
Modelling of a solar chemical plant

Modelling-Control Software (Labview®)

Parameter

Insulated Power (#1)

Heliostatfield-Simulation Tool
STRAL (C++)

Parameter

Temperature (#2)

Temperature Model
(Matlab/Simulink®)

Parameter

Reaction (#3)

Chemical Process Model
Pilot Plant arranged on the research platform of the ST Jülich (artist view)
Thermochemical cycle for sulfur-based seasonal heat storage

\[
2 \text{H}_2\text{O} + 3 \text{SO}_2 \Rightarrow 2 \text{H}_2\text{SO}_4 + \text{S}
\]

\[
\text{S} + \text{O}_2 \Rightarrow \text{SO}_2
\]

\[
2 \text{H}_2\text{SO}_4 \Rightarrow 2 \text{H}_2\text{O} + 2 \text{SO}_2 + \text{O}_2
\]

Source: General Atomics
Design of two-chamber solar reactor

Solar radiation (focus 1)

Solar radiation (focus 2)

Foam

Honeycomb

SO₂ + O₂ + H₂O

SO₃ + H₂O

H₂SO₄

Front view of evaporator and decomposer

Rear view
Experimental results:
Conversion of SO$_3$ vs. honeycomb temperature

New catalyst required at low temperature (e.g. vanadium oxide, platinum)
State of work

- Development of solar reactor for decomposition of sulfuric acid
- Experimental analysis of SO_3 conversion at different temperatures
 - New catalysts required at $T < 700\,^\circ\text{C}$

- Modeling of SO_3 decomposition chamber of reactor
- Adaptation of an existing Dymola/Modelica finite volume model
- Validation with experimental results
 - Good modeling of thermal behavior of reactor
 - Model of chemical reaction only valid at elevated acid flow rates
- Simulation of transient behavior
 - Adequate prediction of experimental values

- Optimization of reactor performance: conversion $> 80\%$, efficiency $> 50\%$
- Development of a reactor model in Aspen Custom Modeler®
- Integration of model into system flowsheets of HyS/sulfur cycle
Conclusion and Outlook
Summary and Outlook

- **Thermo-Chemical Energy** storage
 - Has a high potential for the future energy economy as well for Germany as stated in the 6th ERP as for the EU which just implements it in the HORIZON 2020 framework
 - DLR will contribute to these efforts

- **Technically it offers several advantages** like
 - potentially high storage density,
 - lossless long-term storage

- **the crucial points are**
 - adapted reactor systems and
 - process integration

- **Further research cooperation with USA partners would use synergies and accelerate the developments**
Future Solar Thermal Plants – more than power!

Production of fuels (renewable H_2 and CH_4 / CH_3OH), Recycling of CO_2, Power Production, Process Heat and Desalination (H_2O)}
Acknowledgement

- Thanks to all our funding agencies especially the German Federal Ministries and the European Commission and our industrial partners.

- Thanks to all colleagues and partners who provided various contributions to this work.
Thank you very much for your attention!
Model of chamber for decomposition of SO$_3$

SO$_3$ decomposition chamber

- **INLET:** SO$_3$/H$_2$O from evaporator and N$_2$ for dilution/cooling
- **Product gas:** SO$_2$, SO$_3$, O$_2$, H$_2$O, N$_2$
- **SiSiC honeycomb**
- **Steel piping**
- **Steel cone**
- **Solar radiation**
- **Quartz window**

Equations:
- $\text{H}_2\text{SO}_4 \rightarrow \text{SO}_3 + \text{H}_2\text{O}$
- $\text{SO}_3 \rightarrow \text{SO}_2 + \frac{1}{2}\text{O}_2$

Model of evaporator presented by Haussener, et al. at ASME Conference, Puerto Rico, 2012

Validation of model:
Dynamic modeling of temperature and conversion

- Mean honeycomb temperature: 850 °C
- Acid volume flow rate: 4 ml/min (50 w-%)

- Mean honeycomb temperature: 850 °C
- Acid volume flow rate: 5 ml/min (50 w-%)