Insulation Strategies to Meet Upcoming Code and Above Code Programs
Presentation Overview

- Innovative insulating & wall assembly strategies
 - Typical assembly
 - New innovations
 - Features & benefits of each
Typical Site Built Residential Wall

Concept:
- Site built wood frame wall with exterior sheathing and batt insulation

Components:
- Exterior Finish (bulk moisture control)
- Building wrap
- Exterior sheathing
- 2x4 Studs @16” O.C.
- Batt Insulation (+/- 3.7 R per inch)
- Gypsum board

Benefits:
- Relatively low cost
Typical Site Built Residential Wall

Key performance deficiencies

- Low effective R-value
- Difficulty meeting IECC 2012 R-value requirements with 2x4 stud cavity
- Thermal bridging due to non-continuous insulation
- Air leakage points
- No vapor control layer
Innovative Solutions
Structural Insulated Panels (SIP)

Concept:
- EPS or Polyurethane sandwiched between sheathing to create a highly insulated wall

Components:
- Moisture barrier control layer
- Wood sheathing
- Rigid foam insulation core
 - EPS - R-3 to R-4.5 per inch
 - or
 - Closed cell spray foam insulation – R-6 to R-7 per inch
- 2x4 or 2x6 Studs

Benefits:
- R-value increases with thickness of SIP
- Minimal thermal bridging
- Panelization creates labor and construction cycling benefits
- Can achieve R-21 to R-55 in the whole assembly
Structural Insulated Panels (SIP)
Key Performance Metrics

- **Code & Above Compliance:**
 - Can meet wall insulation requirements for all climate zones at 4 inch thickness

- **Key Control Layer Placement:**
 - Thermal– rigid insulation
 - Vapor– exterior finish
 - Bulk moisture- exterior cladding
 - Air- rigid insulation

- **Applicability per climate Zone:**
 - Suitable for all climate zones

3/2/2012
Innovative Solutions
Insulated Concrete Forms (ICF)

Concept:
- EPS blocks are together and filled with concrete to create a highly insulated wall

Components:
- Exterior Finish
 - Moisture barrier
- Rigid foam insulation, R-3 to R-4.5 per inch
- Concrete
- Rebar

Benefits:
- High R-value increases with thickness of ICF
- High resistance to severe weather/ high wind speeds
- Potential for HVAC equipment size reduction
Insulated Concrete Forms (ICF)

Key Performance metrics

- **Code & Above Compliance:**
 - Meets wall insulation requirements for all climate zones

- **Key Control Layer Placement:**
 - Thermal – rigid insulation
 - Vapor – exterior finish
 - Bulk moisture – exterior finish
 - Air – exterior finish

- **Applicability per climate Zone:**
 - Suitable for all climate zones
Innovative Solutions
Hybrid cavity with continuous exterior insulation

Concept:
- Typical site built stud wall with a flash coat of closed cell SPF in the cavity, and your favorite fibrous insulation filling the rest of the cavity

Components:
- Insulated exterior sheathing
 - Integral moisture control layer
 - Separate moisture control layer
- Closed cell SPF
 - 1-2 inches @ R-6.7 per inch
 - Air permeable insulation, avg 3.7 R per inch
- 2x4 or 2x6 Studs
- Gypsum board

Benefits:
- Reduced air infiltration due to air sealing properties of spray foam
- SPF can be vapor permeable or a vapor barrier depending on thickness
- Increased R-value without significantly increased depth
- Potential for HVAC equipment size reduction
- Suitable for walls and ceilings
Hybrid insulation wall
Key performance metrics

- **Code & Above Compliance:**
 - Meets insulation requirements for all climate zones using 2x4 construction

- **Key Control Layer Placement:**
 - Thermal—High density foam, air permeable insulation
 - Vapor—Joint sealed exterior continuous insulation
 - Bulk moisture- exterior cladding
 - Air- Closed cell SPF, Joint sealed exterior continuous insulation

- **Applicability per climate Zone:**
 - Suitable for all climate zones
Example of Optimized Approach

- SIP Roof, 8 inch R-49
- Hybrid Insulation wall, 2x4 R-24
- ICF Foundation wall, 11.5 inch R-25
- Exceeds code and above requirements for all climate zones!
Thank you!

- Christopher Little, Construction Science Advisor
 BASF Corporation, Center for Building Excellence
 - Email: Chris.Little@BASF.com