Formaldehyde in New Homes

Ventilation vs. Source Control

Brett C. Singer and Henry Willem
Environmental Energy Technologies Division
Lawrence Berkeley National Laboratory

Presented at
Building America
Residential Energy Efficiency Stakeholder Meeting

March 1, 2012
Austin, Texas
Acknowledgments

• Funding
 — U.S. Department of Energy – Building America Program
 — U.S. EPA – Indoor Environments Division
 — U.S. HUD – Office of Healthy Homes and Lead Hazard Control
 — Cal. Energy Commission Public Interest Environmental Research

• Technical Contributions
 — Fraunhofer
 — Ibacos
 — IEE-SF

• LBNL Team
 — Sherman, Hotchi, Russell, Stratton, and Others
Formaldehyde is an irritant and a carcinogen.

Odor threshold: about 800 ppb.

Widely varying health standards:

- US HUD (8-h): 400 ppb
- Germany: 100 ppb
- WHO, Japan (0.5-h): 80 ppb
- Sweden (0.5-h): 50 ppb
- Canada (8-h): 40 ppb
- California ARB (8-h): 27 ppb
- US NIOSH (8-h): 16 ppb
- CA OEHHA (chronic): 7.5 ppb

Goal is to reduce / minimize exposure, may not be viable to declare homes “safe” from formaldehyde.
Formaldehyde in bulk material, diffuses to surface

Conventional Understanding:
Increase ventilation \rightarrow reduce air conc. \rightarrow increase emissions
Background 2

- Limited recent formaldehyde data for U.S. new homes
 - California New Home Study:
 - 108 homes: Summer/Winter, North/South splits

- Composite wood products are largest sources in homes

- Few examples of apportionment in finished homes
Formaldehyde highest in new homes, Concentrations decrease with age

Single-family houses in Japan
(New in 1st year)

Concentration (ug/m³)

24 h mechanical ventilation
Local exhausts
Natural ventilation

1st year
2nd year
3rd year

Park JS, Ikeda K. Variations of formaldehyde and VOC levels during 3 years in new and older homes. Indoor Air. 2006 Apr;16(2):129-35.
Formaldehyde Emission Standards

- **CA: Composite Wood Air Toxic Control Measure**
 - Approved 2007 under authority to regulate outdoor air
 - Phased implementation 2009-2012

- **U.S. Formaldehyde Standards in Composite Wood Products Act**
 - Approved 2010 to be implemented by Jan 1, 2013
 - Based on CA standards
Emissions Determinants

- **Source**
 - Concentration within material
 - Decreases with time
 - Diffusion rates and barriers
 - Connection to indoor air

- **Environmental**
 - Temperature
 - Humidity
 - Solar insolation

Source: Berge et al. (1980)
Formaldehyde release from particle board. Holz als Roh- und Werkstoff, 38, 251-255
Controlling Formaldehyde

- **Source control:**
 - Seal with low-permeability laminate
 - Resin formulations that chemically bind formaldehyde

- **Options requiring energy use in building**
 - Dehumidification
 - Air cleaning / treatment
 - Ventilation?
Research Questions

- Can increasing ventilation substantially reduce formaldehyde concentrations in new homes?
- To what extent do emissions increase when air exchange is increased?
- Do homes built with low-emitting materials have lower formaldehyde concentrations? How much?

- This information is needed to evaluate the cost-effectiveness of ventilation and source control!
Existing Data: California New Home Study

California New Home Study Data

These homes built prior to formaldehyde emission standards

Built: 2002-5
Data: 2006-7
N=108
Ventilation impact in CA new homes
Summer data

Built: 2002-5
Data: 2006-7
Age: 1.8-5.5 y

Summer
N=48

Formaldehyde (ppb)

Air Exchange Rate (1/h)
Ventilation impact not explained by age variations

Built: 2002-5
Data: 2006-7
Age: 1.8-5.5 y
Summer
N=48
Ventilation impact not explained by T or RH variations

Built: 2002-5
Data: 2006-7
Age: 1.8-5.5 y
Summer
N=48

Indoor Temp (F)

Indoor RH (%)

Air Exchange Rate (1/h)
Emission suppressed at low AER

- Built: 2002-5
- Data: 2006-7
- Age: 1.8-5.5 y
- Summer
- N=48

$F, \text{ df (2.3, 2): } P<0.1$
Ventilation Intervention Study

- Modify AER in 9 homes with other parameters fixed
 - Materials
 - Temperature
 - Rel. Humidity
 - Season

- AER control via mechanical ventilation

- Measure AER & concentrations, calculate emissions

<table>
<thead>
<tr>
<th>Material</th>
<th>Age (yrs)</th>
<th>Floor area (ft²)</th>
<th>ACH 50</th>
<th>Low-emitting Material#</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>2.0</td>
<td>2100</td>
<td>1.2</td>
<td>1,2,3</td>
</tr>
<tr>
<td>R2</td>
<td>1.5</td>
<td>150</td>
<td>4.0</td>
<td>1,2,3</td>
</tr>
<tr>
<td>R3</td>
<td>1.5</td>
<td>150</td>
<td>4.0</td>
<td>1,2,3</td>
</tr>
<tr>
<td>R4</td>
<td>0.3</td>
<td>1475</td>
<td>0.6</td>
<td>1,2,3</td>
</tr>
<tr>
<td>R5</td>
<td>7.5</td>
<td>1300</td>
<td>4.3</td>
<td>-</td>
</tr>
<tr>
<td>R6</td>
<td>0.8</td>
<td>1570</td>
<td>1.0</td>
<td>2,3</td>
</tr>
<tr>
<td>R7</td>
<td>1.0</td>
<td>2260</td>
<td>0.7</td>
<td>2,3</td>
</tr>
<tr>
<td>R8</td>
<td>2.5</td>
<td>1600</td>
<td>1.0</td>
<td>2</td>
</tr>
<tr>
<td>R9</td>
<td>2.5</td>
<td>3440</td>
<td>4.0</td>
<td>2</td>
</tr>
</tbody>
</table>

#1= Wood products compliant with CA Title 17 or low- or no- formaldehyde standards, 2= Wet surface finishing certified as low-emitting, 3= Carpet materials and backing low-emitting.
Lower concentration with increased AER in each study home

May - Sep 2011
Age: 0.3 - 2.5 y
N = 9 homes
Emission impact of AER varies

May - Sep 2011
Age: 0.3 - 2.5 y
N = 9
Study of Source Control

Measure concentrations and AER in new homes constructed with low-emitting materials

- 10 LEED / Indoor Air Plus homes in New Mexico (NM)
 - 0.3 – 2.5 years old
 - ATCM compliant wood products
- 8 California homes complying with ATCM:
 - 0.3 – 1.1 years old
- Additional data being collected in CA-compliant homes

Compare to CNHS and NM conventional homes
Low-emitting materials yield lower formaldehyde concentrations
Low-emitting materials yield lower emission rates, still depend on AER.
Conclusions

• Emission limits on composite wood products reducing formaldehyde in new homes
• Increasing ventilation can reduce near-term concentrations, exposures
• Benefits of adding ventilation depend on starting point b/c emissions increase
• Increasing ventilation should deplete sources more rapidly
• Open questions
 — What is value of health benefits?
 — How much impact does higher ventilation have in long term?
 — Time evolution of homes with low-emitting materials?
Extra Slides

- The following slides will not be shown unless requested or needed
No Mechanical Ventilation Benefits only by Increasing AER

- Built: 2002-5
- Data: 2006-7
- Age: 1.8-5.5 y
- Summer
- N=48
Health Benefit Calculation

- Methodology described in Logue et al., Environmental Health Perspectives, 2012
- 10 ppb reduction for 100K people for 1 year saves 5 DALYs
- Assume 25K homes for every 100K people living in new homes
- $100K per DALY -> $500K per year ->
- $20 per 10 ppb per year
- 10 ppb lower over 10 years -> $200 per home
Ventilation impacts in CA new homes (Adjusted to 77 F and 50% RH)

Estimated formaldehyde (ppb) at 77 F and 50% RH

Built: 2002-5
Data: 2006-7
Age: 1.8-5.5 y
Summer
N=48
No Clear Age Signal in CNHS

Built: 2002-5
Data: 2006-7
Age: 1.8-5.5 y
Summer
N=48