Exterior Insulation & Overclad Retrofits

Exterior Insulation

- Incredible practical experience:
 - New construction nearly a century
 - Retrofit applications many decades

1980s ON – a "weird" builder

1990s ON – a "good" builder

2000s ON – a "typical" builder

2000s ON – another "typical" builder

2000s MA – a "High-R" assembly

1990s – "modest" retrofit

2000s – "High-R" retrofit

1980s – faced semi-rigid fiberglass

2000s – masonry "High-R" retrofit

2000s – masonry rockwool retrofit

Gaps?

- Practice
 - Lots of practical experience
- Theory
 - Misconceptions
 - Missing context
- Codes & Standards
 - Playing catchup

Perceived Benefits

- Increase overall thermal performance
- Minimize thermal bridges
- Improve air tightness
- Improve rainwater management
- Eliminate potential for air leakage condensation

Perceived Problems

- Moisture
 - Rainwater management
 - Vapor diffusion condensation
- Structural
 - Wind load (lateral & perpendicular)
 - Gravity load
- Fire
 - Lack of code accepted assemblies

Work to Close Moisture Gaps

- BSC
- Private Industry (mfrs, builders, etc.)

Rainwater Management Details

- 62 details provide guidance on ext. insulation retrofits
 - Windows
 - Roofs
 - Balconies
 - Decks

ROOF TO WOOD FRAME WALL - B

SCALE: 1-1/2" = 1'-0"

Field Testing & Demonstration

Field Testing & Demonstration

Round1: Interior Wetting & Rain (no XPS)

Remaining Moisture Gaps

- Hygric Redistribution: is this effect significant enough to be
 - Useful?
 - Problematic?

Work to Close Structural Gaps

- BSC
- FSC and NYSERDA /SFA
- NAHB
- others

Lateral Wind Loads

Lateral Wind Loads

Perpendicular Wind Loads

American Wood Council 2005 NDS

Fastener Type			Unthreaded Shank Diameter (in)		Withdrawal Capacity (W) per inch of thread penetration			
#8 Wood Screws			0.164		82 lbs			
#10 Wood Screws			0.190		96 lbs			
#12 Wood Screws			0.216		109 lbs			
¹ / ₄ " Lag Screws			0.250		173 lbs			
	#8 Wood Screw		#10 Wood Screw		#12 Wood Screw		1/4" Lag Screw	
	Furring Spacing (in)		Furring Spacing (in)		Furring Spacing (in)		Furring Spacing (in)	
Vertical Fastener Spacing	16"	24"	16"	24"	16"	24"	16"	24"
8"	148	99	172	115	195	130	301	200
12"	99	66	115	76	130	87	200	134
16"	74	49	86	57	98	65	150	100
24"	49	33	57	38	65	43	100	67

Work by others (D. Deress et. al., WJE)

These researchers used ¼" dia. Headlok screws and loaded the system to failure (1000-2000 lb/screw !)

Gravity Loads (i.e. cladding loads)

- Strut & tie model?
 - the space between the pieces of wood isn't empty, it's filled with insulation

Total Load (lbs)		Load / ft2 (lbs)	Load/fastener (lbs)		
120	Fiber Cement	3.8	8.6		
370	Hard Coat Stucco	11.6	26.4		
500		15.6	35.7		
750	Adhered Stone	23.4	53.6		
1000	Aunereu Stone	31.3	71.4		

- For 4" thick insulation w/ #10 screws
 - Material type has a small impact
 - Higher compressive strength insulation = less delta
- Current consensus allow 0.015" (1/64") deflection
- Too small relative to other movements (e.g. moisture)?

$\Delta D =$	$D_{\rm I}(M_{\rm F}-M_{\rm I})$	(12.2)
	$\frac{1}{30(100)/S_{\rm T}-30+M_{\rm I}}$	(13-3)

AMERICA

bsc

Predicted change in dimension (in/1000)										
S _T (%)	7	Starting Moisture Content (%wt)								
D ₁ (in)	3.5	20	18	16	14	12	10			
	20	0	17	34	51	68	86			
vt)	18	-17	0	17	34	51	69			
Ending MC (%wt)	16	-33	-17	0	17	34	51			
٩C	14	-50	-34	-17	0	17	34			
و م	12	-67	-50	-34	-17	0	17			
din	10	-84	-67	-51	-34	-17	0			
En	8	-100	-84	-68	-51	-34	-17			
	6	-117	-101	-84	-68	-51	-34			

- System capacities for 0.015" (1/64") deflection
 - EPS & XPS ~ 10 psf or 23 lb/fastener
 - Polyiso & MF ~ 13 psf or 29 lb/fastener
- Comparison to NYSERDA work
 - 5% yield from TR-12 w/ #10 screws & 4" space 27 lb

Long-term Gravity Load Response

Long-term Gravity Load Response

- Long term deflections
 - Extremely small (close to experimental error)
 - Can barely see creep under low (5 psf) load
 - Very little movement under high (20 psf) load
 - Influenced by lab temperature & humidity conditions?

- What initial deflection is acceptable?
- What long term deflection is acceptable?
- These must be considered separately

Remaining Structural Gaps

- Compare wider range of system tests to calcs
 - 5% TR-12
- What deflections are allowable?
 - Initial
 - Long-term
- Changing environmental conditions
 - e.g. moisture, temperature, etc.
 - How do these impact gravity load deflections?
 - Deflections vs other dimension changes?

Work to Close Fire Gaps

- Private Industry (mfrs)
 - e.g. Dow Thermax CI
- Little work ahs been done to close this gap
 - Not necessarily a performance problem rather a regulatory problem
 - Change in any element in an assembly requires a new test
 - \$20-50k / test

Exterior Insulation & Cladding Retrofits

Thank You

Test Hut Ext. Insul. w/ OSB

Test Hut Ext. Insul. w/o OSB

Test Hut Ext. Insul. w/o OSB

Test Hut Ext. Insul. w/o OSB

