Wall System Innovation

Familiar Materials

Better Performance

Vladimir Kochkin
Joseph Wiehagen
April 2013
Wall Innovation Metrics

- High R (thermal and air barrier)
- High Performance
 - Durable, structural
- Build-able
- Low transition risk to builders
- 50% Building America Goal
- \(\approx R25+ \) (CZ 4 and higher)
Background

- Technologies for high-R walls have been proposed and used for over 25 years
- But real market penetration is very low
- Often the last EE measure implemented by builders (e.g. E*)
Background

- High-R wall solutions have not achieved a broad level of standardization and commonality
 - A large set of methods and materials entered the market
 - Multiple and conflicting details
- Wall characteristics are more critical = RISK
New Home Starts – Wall Framing

<table>
<thead>
<tr>
<th>FRAMING</th>
<th>2001</th>
<th>2006</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>2x4 @ 16” o.c.</td>
<td>74%</td>
<td>73%</td>
<td>57%</td>
</tr>
<tr>
<td>2x4 @ 24” o.c.</td>
<td>2%</td>
<td>3%</td>
<td>4%</td>
</tr>
<tr>
<td>2x6 @ 16” o.c.</td>
<td>22%</td>
<td>22%</td>
<td>32%</td>
</tr>
<tr>
<td>2x6 @ 24” o.c.</td>
<td>2%</td>
<td>2%</td>
<td>6%</td>
</tr>
<tr>
<td>Other</td>
<td>1%</td>
<td>0%</td>
<td>1%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>
New Home Starts – Wall Sheathing

<table>
<thead>
<tr>
<th>FRAMING</th>
<th>2001</th>
<th>2006</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>None (concrete, SIPs or others)</td>
<td>10%</td>
<td>12%</td>
<td>9%</td>
</tr>
<tr>
<td>WSP (Plywood, OSB, ZIP)</td>
<td>65%</td>
<td>68%</td>
<td>80%</td>
</tr>
<tr>
<td>1/2 inch fiberboard</td>
<td>3%</td>
<td>3%</td>
<td><1%</td>
</tr>
<tr>
<td>1/8 inch (Thermoply, EnergyBrace)</td>
<td>3%</td>
<td>2%</td>
<td>3%</td>
</tr>
<tr>
<td>SIS</td>
<td>n/a</td>
<td>n/a</td>
<td>1%</td>
</tr>
<tr>
<td>Foam (XPS, EPS, ISO)</td>
<td>17%</td>
<td>12%</td>
<td>5%</td>
</tr>
<tr>
<td>Other</td>
<td>3%</td>
<td>4%</td>
<td>0%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>
New Home Starts

Oversheathing

<table>
<thead>
<tr>
<th>Oversheathing</th>
<th>2006</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shares of Homes with 2nd Layer of Foam Sheathing</td>
<td>7%</td>
<td>9%</td>
</tr>
</tbody>
</table>

Housewrap

<table>
<thead>
<tr>
<th>Housewrap</th>
<th>2006</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homes with housewrap</td>
<td>54%</td>
<td>75%</td>
</tr>
</tbody>
</table>
New Home Starts – Cavity Insulation

<table>
<thead>
<tr>
<th>FRAMING</th>
<th>2006</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiberglass batt</td>
<td>76%</td>
<td>68%</td>
</tr>
<tr>
<td>Fiberglass blown</td>
<td>7%</td>
<td>8%</td>
</tr>
<tr>
<td>Spray foam</td>
<td>3%</td>
<td>11%</td>
</tr>
<tr>
<td>Cellulose</td>
<td>11%</td>
<td>8%</td>
</tr>
<tr>
<td>Other or none</td>
<td>3%</td>
<td>5%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>
Increasing Wall Insulation

- When builders are asked how would they go about increasing the wall R-value
 - About 60% say they would use 2x6 or increase the cavity R-value
 - Less than 15% say they would use exterior foam
Barriers to Adoption

- “Devil is in the details”
 - Claddings
 - Windows
 - Trim
 - Vapor retarder
 - Framing layout
 - Attachments/connections
 - Drainage plane
 - Air barriers
 - Etc etc etc
Vision for a Wall Construction Guide

Provide practical (and preferred) solutions for high-performance walls

(1) can be readily implemented in the field using available methods and materials

(2) can withstand the test of time from environmental and structural loads

(3) grounded in research and testing
Guide Format

- Builder-focused and graphics-rich
 - Application (climate zone)
 - Wall Systems (preferred solutions, not concepts)
 - Details
 - Material characteristics
 - High-R options
 - Integration
 - “Hot spots”
Current High-R Options

- Deeper cavity
 - Thermal bridging limitation
 - R-value limit
 - Practical wall thickness limit

- Ext Rigid Insul.
 - OSB behind foam
 - Cladding attachments
 - Foam attachment
 - Windows
 - Drainage plane
 - Panelization
Is there another way?

● Hybrid: *Extended Plate & Beam System*
 - R25+
 - Off-the-shelf materials
 - Standard cavity (2x4 or 2x6)
 - OSB on the exterior, so is drainage plane
 - Standard window installation
 - Integrated rigid foam insulation
 - Site-built or panelized
 - Rim headers integral part of the system
Extended Plate & Beam

- Plates and studs are different width
- R25 (2x4 studs & 2x6 plates)
- R30 (2x6 studs & 2x8 plates)
Mock-up Wall
2-inch Rigid Foam
Exterior OSB

- Increased nailing at plates to offset weaker nails in the panel field
Initial Shear Wall Testing

Equivalent to IRC 6”oc nail spacing

Response mode = typical wood wall
Multi-ply rim header (beam)

Header built into the floor
Moisture Performance

- **WUFI Simulations by Sam Glass (FPL)**
 - Baltimore, Chicago, Minneapolis
 - 2x4s & 2x6p, 2x6s & 2x8p
 - OSB uncoupled from cavity by foam
 - OSB MC fluctuates with seasons and depends on cladding but always below 20%
 - For walls without a vapor retarder, cavity RH higher in very cold climates
EP&B Summary

- Developed for R25+ walls
- Structural sheathing on the exterior
- Foam sheathing to exterior of studs
- Window placement and drainage plane standard methods
- Rim header sufficient span most openings
- Warm Cavity
EP&B Summary (cont’d)

- Same construction methodology for R25 and R30 options
- Under development
 - Siding attachment
 - OSB and plate attachment
 - Window and door installation
 - Rim header: lumber, EWP
 - Moisture management
 - Additional shear wall testing
EP&B Summary (cont’d)

- Field-framed or panelized
- Standard construction details
- Durable by design

= Simplified transition from conventional framing options