Heating Ventilation and Air Conditioning Efficiency

Presented By: WALTER E. JOHNSTON, PE
CEM, CEA, CLEP, CDSM, CPE
<walterjohnston@Bellsouth.net>
The purpose of a Heating, Ventilation and Air Conditioning (HVAC) system is to provide and maintain a comfortable environment within a building for the occupants or for the process being conducted.

Many HVAC systems were not designed with energy efficiency as one of the design factors.
Air

Air is the major conductor of heat.

OR

Lack of heat = air conditioning
Btu – Amount of heat required to raise one pound of water $1^\circ F = 0.252$ KgCal

1 Pound of Water = About 1 Pint of Water ~ 1 Large Glass

1 Kitchen Match = 1 Btu
HVAC

12,000 Btu/hour = 1 ton of air conditioning
Low Cost Cooling Unit

Uses simple mechanical principles.

Needs winding but once a day!

Can be run by electricity easily!

Lifetime needle bearings throughout.

All fiber gears.

Frost-free element.

Activating weight.

All welded construction of finest steel.

Condensate.

Fresh air.
75 degrees F temperature
50% relative humidity
30 – 50 FPM air movement
15 – 20 CFM outside air per person or CO₂ less than 1,000 PPM

ASHRAE 62 – 1989 Ventilation Standard
Typical HVAC System and Energy Users

**Typical HVAC System and Energy Users**

**Energy Users**
1. Compressor Motor
2. Condenser Fan (Electric Motor)
3. Evaporator/Air Handling Fan (Electric Motor)

**Heat Contributors**
1. Room Contents — people, lighting, machinery, building load
2. Amount of Makeup Air
3. Evaporator Fan Heat

**Efficiency Factor**
1. Evaporation Coils — Clean or Dirty
2. Condenser Coils — Clean or Dirty
3. Energy Efficient Motors on Compressors & Fans
4. Freon Line Insulation
5. Duct Insulation & Integrity
6. Amount of Makeup Air
What were your Design Air Flows (cfm)?

What are Actual Air Flows (cfm)?

Where do you want the air flows to be?
HVAC

50 Hp Fan @ 7 Days/Wk; @ 24 Hours/Day = $28,000/year
\[ \text{CHANGE IN KW} = \left( \frac{\text{RPM}_2}{\text{RPM}_1} \right)^3 = \left( \frac{\text{CFM}_2}{\text{CFM}_1} \right)^3 \]

\[ \text{RPM}_1 = 100 \text{ RPM} \]

\[ \text{RPM}_2 = 90 \text{ RPM} \]

\[ \text{KW}_2 = \left( \frac{90}{100} \right)^3 = .73 \]

\[ \text{27\% Reduction in Energy} \]
Fan Law Savings

Electric Motors

Percent Energy Reduction

Percent Reduction in Speed
HVAC

Varying Fan CFM

1. Variable Speed Drives
2. Two Speed Motors
3. Intel/Exhaust Dampers
4. Variable Speed Sheaves
5. Change Standard Sheaves
6. Magnetic Coupling
7. Variable Pitch Fans
HVAC
Uses of V.A.V.

1. Varying People Loads
2. Varying Inside/Outside Temperature
3. Time of Day
4. Sun/Wind Position Load Changes
5. Temperature Adjustment (Internal)
Single zone systems consist of a mixing, conditioning and fan section. The conditioning section may have heating, cooling, humidifying or a combination of capabilities. Single zone systems can be factory assembled roof top units or built up from individual components and may or may not have distributing duct work.
HVAC

Multi-zone Systems

Multizone systems condition all air at the central system and mix heated and cooled air at the unit to satisfy various zone loads as sensed by zone thermostats. These systems may be packaged roof top units or field fabricated systems.
Dual duct systems are similar to multizone systems except heated and cooled air is ducted to the conditioned spaces and mixed as required in terminal mixing boxes.
Reheat systems are modifications of single zone systems. Fixed cold temperature air is supplied by the central conditioning system and reheated in the terminal units when the space cooling load is less than maximum. The reheat is controlled by thermostats located in each condition space.
Basic/Typical Control Strategies

• OA closed on night cycle
• OA closed on morning warm up
• Fans off at night (unless heating called for)
• Hot/chilled water temperature reset with respect to OA temperature
• Exhaust fans locked out at night
• SA temperature reset with respect to zone needing most heat/cooling
• Time clock control of equipment (e.g. boiler, pneumatic air, fans, etc.)
• Economizer cycle
• Optimum start/stop
• Demand limiting
• Duty cycling
Example

Assume a period of three days when the outside temperature averages 50°F (10°C) each day

The number of HDD for this three-day period would be:

\[
\text{HDD} = (65° - 50°) \times 3 \text{ days} = 45 \text{ degree days}
\]

\[
\text{HDD} = (18.33° - 10°) \times 3 \text{ days} = 25 \text{ days}
\]
HVAC

Air-to-Heat Recovery

“Run-Around Cycle”

make-up coils

outside

exhaust coils

air make-up

inside

exhaust
Cogged V Belts

A major N.C. Manufacturer Tested 2-17 Months (yr 1985)

$.052/KWH (.13 EP) 2700 Hours/Year 15 HP

<table>
<thead>
<tr>
<th>Belt Type</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>COGGED BELT</td>
<td>$10.67</td>
</tr>
<tr>
<td>STANDARD BELT</td>
<td>$ 3.33</td>
</tr>
<tr>
<td>PREMIUM BELT</td>
<td>$ 7.34</td>
</tr>
</tbody>
</table>

BRAND A 4.4%
BRAND B 1.0%

AT 4.4% THE POTENTIAL SAVINGS IS $69.50/YEAR

MANUFACTURERS PREDICT 2-6 TIMES LIFE

DO NOT USE ON ROCK CRUSHERS, ETC.
Waste Heat Recovery

Figure 8-8 Simple heat wheel. (Used with permission of the American Society of Heating, Refrigerating, and Air Conditioning Engineers, Inc., Atlanta, Ga.)
The Relationship of 8 Properties of Air

1. Dry Bulb Temperature
2. Wet Bulb Temperature
3. Dew Point Temperature
4. Percentage Relative Humidity
5. Moisture Content (weight of water vapor in 1 lb. of dry air, given in grains) (7,000 grains = 1 lb.)
6. Enthalpy (quantity of heat in each lb. of dry air, Btu/lb. of dry air)
7. The Volume Occupied by Each Pound of Air
8. Vapor Pressure due to the Presence of Water
HVAC

Psychometric Chart
**Waste Energy Checklist**

**Ventilation**
1. Excess outside air intake
2. Outside air damper not properly adjusted
3. Leaking or defective outside air damper seals
4. Clogged filters

**Infiltration**
5. Broken or cracked window panes
6. Rotted or defective weather stripping
7. Loose or missing caulking
8. Poor window alignment

**Infiltration**
9. Defective weather stripping
10. Misaligned doors
11. Missing or defective caulking
12. Gaskets or other seals defective
13. Defective door closer
14. No personnel access doors at garage or overhead doors

**Heating and Cooling**
15. Nonexistent operating schedule – unnecessary heat or cooling in unoccupied spaces
16. Thermostat set too high or low
17. Defective thermostat
18. Defective limit switches
19. Storage areas mixed with office or personnel spaces, which could be maintained at a lower temperature
20. Unnecessary heat in garages, docks or loading platforms
21. Exhaust fans running when not needed
22. Open drapes or shades during cool weather when sun is not shining
23. Process heat not isolated from personnel spaces
24. Unnecessary extra backup system operation
25. Mixture of fuel and air not properly maintained
Refrigeration Equipment
26. Moisture in refrigerant
27. Leaks in refrigerant system
28. Clogged strainers or filters
29. Worn drive belts
30. Slipping drive belts
31. Insulation missing from suction and liquid lines
32. Dirty heat exchanger or condenser fins and coils
33. Condenser located near hot-process equipment or located in direct sunlight
34. Corrosive or mineral-laden water being used
35. Bent or unbalanced fans
36. Dirty fan blades
37. Clogged nozzles in cooling tower spray bars
38. Missing slats in cooling tower
39. Dirty louvers
40. Restricted flow

BOILERS:
41. Scale deposits in boiler or system
42. Soot accumulation in tubes
43. Defective door gaskets
44. Pressure and temperature set too high
45. Burner out of adjustment
46. Loose or worn linkages
47. Defective fuel solenoid valve
48. Dirty nozzles or cup on oil-fired
49. Defective insulation
50. Leaks in fuel line
51. Dirty oil strainer
52. Defective igniter
53. Air lock in radiators
54. Dirty radiators
HVAC
Waste Energy Checklist

55. Obstructed air flow
56. Dirty infrared reflectors
57. Low voltage or heating elements
58. Dirty dampers or fan parts
59. Defective nozzles or medium pads
60. Leaking ductwork
61. Defective insulation on ducts
62. Obstructed ducts
63. Dumper blades defective
64. Air valves no properly seated
65. Mixing dampers not properly adjusted
66. Dirty grills or diffusers
67. Broken or missing deflector
68. Moisture accumulation in ductwork
69. Air leaks in pneumatic system
70. Low air pressure in supply tank
71. Clogged filter pads on intake