Industrial Technologies Program

A BestPractices Training Presentation

U.S. Department of Energy

Motor Systems Assessment Training, Including Use of the Motor Systems Tool Suite

U.S. Department of Energy Energy Efficiency and Renewable Energy Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable

Presented by: Gilbert McCoy, PE

Washington State University Extension Energy Program (360) 956-2086 mccoyg@energy.wsu.edu

Department of Energy Information Resources

U.S. DOE Industrial Technologies Program (ITP) BestPractices Website www.eere.energy.gov/industry/bestpractices EERE Information Center (877) 337-3463 Or www.eere.energy.gov/informationcenter

Big Picture Perspectives: Industrial Motor Systems

Industrial motor systems:

- Are the single largest electrical end use category in the American economy
- Account for 23% of U.S. electrical sales.

A motor SYSTEM is the entire energy delivery process, from electric feed to finished product Utility feed Ultimate **Trans**goal former **Breaker**/ starter 00 **ASD** (maybe) **Driven Load** Motor **Mechanical Work** 5 Motor Systems Assessment Training

Typical Motor System Losses

Industrial Motor System Savings Potential

Industrial motor system energy use can be decreased by 11% to 18% if industries deploy all mature/proven and costeffective energy efficiency technologies

The total savings potential is 75 to 122 billion kWh/year....Valued at \$3.6 to \$5.8 billion per year at current industrial rates

Source: 1999 Xenergy Study

What is efficiency?

Efficiency = Output / Input Efficiency = (Input - Losses) / Input Efficiency = Output / (Output + Losses)

They're all mathematically equivalent.

NEMA Definitions

"Energy Efficient"

 This covers 3-phase induction motors with efficiencies equal to or exceeding that in table 12-11 of NEMA's MG 1 standard. It pertains to low voltage (<600V) motors from 2-poles to 8-poles and 1-500 HP.

"NEMA Premium™ Efficient"

 This covers 3-phase induction motors from 2-poles to 6-poles. It pertains to low voltage motors from 1-500 HP and medium voltage (>600 & <5000V). See http://www.nema.org/premiummotors

To Compare all the motor efficiency standards, see http://www.energy.wsu.edu/ftpep/pubs/engineering/motors/EfficiencyStandards.pdf

9

Standard, EE, PE Motors – Amount of Copper, Size of Rotor

Courtesy: Toshiba

Motor Part Load Performance

Efficiency versus full-load speed

Motor Management Planning--Motor Survey and Screening Techniques

Motor Management Planning

Goals and Benefits: Provide dollar savings through reduced energy costs Minimize energy consumption (energy use per unit of product) Maximize efficiency while reducing downtime Improve system reliability and productivity

Rule of Thumb for Energy Management

One person-year of effort should be allocated for energy management activities for every \$1 million spent on energy bills annually

After your program has been launched, the level can be set at one person-year for every \$2-\$5 million spent annually

Motor Management Program Building Blocks

 Accurate Motor Inventory Tracking System (or, conduct Motor Survey)
 New Motor Purchasing Policy: Specify Premium Efficiency
 Proactive Repair/Replace Policy
 Strategic Spares Inventory (PEM- Ready)

Adopt Best Practices Repair Standards

Predictive and Preventive Maintenance Planning

Motor Systems Assessment Training

18

Information Requirements for Motor Management Planning

MotorMaster+ Inputs

- Understand Utility Rates
- Gather Motor Nameplate Data
- Establish Motor Operating Profiles
- Tune your Electrical Distribution System
- Obtain Measurements at Connected Loads
- Know Your Load Requirements

Key Energy Management Activities

Analysis

- Identify Energy Conservation Opportunities
- Evaluate Cost-effectiveness of Capital Improvements
- Prepare a Motor and Motor-Driven Systems Improvement Plan

Implement Measurements and Verify Results

MotorMaster+ Analysis Capabilities

MotorMaster+ Savings Tracker

20

Specifying a Motor

□ Horsepower rating (integral hp, 1-500) NEMA Design, Metric, Two-speed □ Enclosure type (ODP, TEFC, EXPL) Voltage rating Synchronous speed Special or Definite Purpose □ Frame Size **Efficiency class**

A small fraction of the motor population is responsible for most energy consumption

Additional Inventory Filters

Focus On:

- Non special or definite purpose motors
- Motors with accessible and readable nameplates
- Include spares

Include information on the coupling, driven equipment, and load requirements

Motor Nameplate Information

Frame Type/Size Voltage Rated Horsepower Amps, Rated Load Time Rating, i.e. Duty Maximum ambient Temperature RPM at Rated Load Insulation Class Design Letter
Service Factor
Frequency
Number of Phases
Locked Rotor Code, MG1 Part 10.37 (kVA/hp)
Efficiency, Rated Load
Other Optional Information

24

Company - Yiew	×					
Eile Facilities Help						
	B? Exit					
Company Database TMP Mill						
Company Information Motor Efficiency Data Facility Ranking						
Horsepower 1-3 5 7.5 10	15 20 25 30 40 50 60 75					
Premium 0 0 0 0						
Energy Efficient 0 0 0 0						
Standard 0 0 0 0	0 0 0 0 0 14 28					
Horsepower 100 125 150 200	250 300 350 400 450 500 Total					
Premium 1 5 2 1						
Energy Efficient 2 0 1 6						
Standard 24 41 20 20	9 6 4 4 3 4 177					
Energy efficient Premium efficiency						
Data Not Current % by number 8.6 7.1						
Recalc % by horsepower 8.7 7.3						
(Incomplete)						

Company - View		×			
<u>File Facilities H</u> elp					
DFI		Exit			
Company Database Kraft Pulp Mill		<u>B</u> rowse			
Company Information Moto	r Efficiency Data	Facility Ranking			
Horsepower 1-3 5 7.5	10 15 20 25	30 40 50 60 75			
Premium 0 0 0	0 0 0 0	0 0 0 30 39			
Energy Efficient 0 0 0	0 0 0 0	0 0 0 7 12			
Standard 0 0 0		0 0 0 15 43			
Horsepower 100 125 150	200 250 300 350	400 450 500 Total			
Premium 24 7 6 Energy Efficient 7 13 2	14 7 11 1 13 1 0 0	0 0 1 140 0 0 0 55			
Standard 22 21 31	21 24 18 10	13 2 7 227			
	Energy e	fficient Premium efficiency			
Data Not Current % by number 13.0 33.2					
Recalc % by horsepower 10.2 26.4					
% by load served 0.0					
(Incomplete)					
1					

Estimating Operating Hours

An evaluation of customer-supplied operating hour assumptions in PGE's Drive-Power program found widespread scatter. Measured or true values ranged from 0 to 8,000 hours for an assumed value of 2,000 hours; and from 500 to 8,760 hours for estimates of 6,500 hours

Operator Operating Hour Estimates

Motor Improvement Planning Action Items

Replace critical motors with histories of frequent failures immediately
Develop a new motor purchase policy
Determine which operable motors should be immediately replaced based on cost-effectiveness criteria
Identify which motors should be replaced with Premium Efficiency units when they fail

Establish a PEM-Ready spares inventory

Forget First Cost!

100 HP TEFC EPACT motor costs ~ \$6,256

It costs \$38,985 to operate per year!

(or 623% of first cost)

@ \$.054/kWh & \$4.87/kW, 8150 hrs/yr, 100% load

Now consider a car: First cost ~ \$25,000

Even at \$3.00/gal, annual fuel costs are only about \$1,500 or 6% of first costs

@ 12,500 miles/year, 25 mpg

30

Equivalent Rates of Use

If the new car used energy at the same ratio of first cost to annual operating cost as the motor:

---It would have to be driven about 216,375 miles or 348,220 km every two months, or

---Gasoline would have to be priced at \$311.58/gal (or \$82.30/liter)

Annual Savings from Specifying New NEMA PremiumTM Efficiency Motors

	Full-load Motor Efficiency (%)		Annual Savings from Use of a NEMA Premium™ Efficiency Motor		
Horsepower	Energy	NEMA	Annual Energy	Annual Dollar	
	Efficient Motor	Premium™	Savings,	Savings,	
		Efficiency	kWh/year	\$/year	
		Motor			
10	89.5	91.7	1,200	\$60	
25	92.4	93.6	1,550	80	
50	93.0	94.5	3,820	190	
100	94.5	95.4	4,470	225	
200	95.0	96.2	11,755	590	
Note: Based on purchase of an 1 800 RDM. Totally Enclosed Ean-Cooled motor with					

Note: Based on purchase of an 1,800 <u>RPM</u>, Totally Enclosed Fan-Cooled motor with 8,000 hours per year of operation, 75% load, and an electrical rate of \$0.05/kWh.

Contingency planning - making the change when a failure occurs

The alternatives evaluation picture changes dramatically when failures occur

Changes that couldn't be justified when the system was functional may very well be after failure

The alternative may actually be less costly than simple repair/replacement of the existing component

Turn Misfortune to Advantage

A motor failure can provide a good opportunity to tune up other aspects of the system:

Downsize motor where appropriate.

- Evaluate driven load speed with respect to new motor; change sheaves size if warranted. Remember pump and fan drive power can vary at the cube of speed or even greater.
- Consider upgrade to an ASD and inverter duty motor.

Repair versus Replace: You Need to Consider...

First cost of repair and new purchase. Efficiency of existing and proposed new motor. Urgency and availability of each alternative. Possible modifications to the mounting. Annual hours of operation. Cost of down time and repairs from a possible early failure in either scenario. **Utility incentives**

Replace versus Repair Existing Standard Efficiency Motors

Motor efficiency (%)		Annual Savings from Use of a NEMA Premium™ Efficiency Motor	
Standard	NEMA	Annual Energy	Annual Dollar
Efficiency	Premium™	Savings,	Savings,
Motor	Efficiency	kWh/year	\$/year
	Motor		
85.7	91.7	3,445	\$170
88.9	93.6	6,305	315
91.1	94.5	8,725	435
91.7	95.4	18,820	940
92.8	96.2	34,910	1,745
	Standard Efficiency Motor 85.7 88.9 91.1 91.7	StandardNEMAEfficiencyPremium™MotorEfficiencyMotorMotor85.791.788.993.691.194.591.795.4	StandardNEMANEMA Premium MotoStandardNEMAAnnual EnergyEfficiencyPremium™Savings, kWh/yearMotorEfficiency MotorkWh/year85.791.73,44588.993.66,30591.194.58,72591.795.418,820

Note: Based on purchase of an 1,800 <u>RPM</u>, Totally Enclosed Fan-Cooled motor with 8,000 hours per year of operation, 75% load, and an electrical rate of \$0.05/kWh.

Coverage Charts tell a Story (for 200 hp 1200 RPM Motors)

A Strategic Spares Inventory (for 75 hp 1800 RPM Motors)

Excess Number of Spares? (125 hp 1800 RPM)

Accelerated Motor Replacement

Motor Improvement Plan

Old Motor	New Motor
Motor # 1	Replace <u>W / EE</u> When Failed
Motor # 2	Downsize / Replace <u>W / EE</u> When Failed
Motor # 3	Immediate Replacement <u>W / EE</u>
Motor # 4	Replace <u>W/Standard</u> or Repair When Failed
Motor # 5	Investigate ASD Potential

What is MotorMaster+? Decision Support Software

Motor Price and Performance Database Motor Selection Tool Energy Savings Analysis Inventory Management Maintenance Logs Energy Management Energy Accounting Utility Motor Rebate Support Life Cycle Costing Tracks Energy Savings and Emissions Reductions

Motor Manufacturers' Price and Performance Database

Electronic catalog with data for over 27,000 motors NEMA A-D, IEC (Metric), Two-Speed General and Definite Purpose (U-Frame, IEEE 841, Washdown, Severe-Duty, Inverter-Duty, Close-Coupled Pump) Updated approximately every two years

Inventory Management Capabilities

Motor Inventory

Query Location Searches

List: All Motors in descending order of hp or annual energy consumption.

- All Motor
- By Facility
- By Department
- By Process
- By Serving Utility

Descriptor Searches/ Selective Reports

- Motors with power supply problem (phase unbalance >=3%, 2%, 1%, etc..
- Indicate all motors with power factor <=stated value
- Identify rewound motors
- List Motors >=specified age
- List motors by process equipment type
- Identify motors >=or <= stated hp value</p>
- List all spares
- List all oversized motors (load <=40%, 50%)
- Show motors with annual energy use > stated value.

47

Inventory Management

Track spare and in-service motors.

Store nameplate, operating profile, field measurement, and load-related information.

Automatic motor load and efficiency estimation features.

Can copy catalog or inventory motors.

Possible to import existing motor databases into the Inventory module.

48

Motor Efficiency Determination

Laboratory: IEEE 112B Basis for NEMA Nominal Efficiency; Nameplate per MG1 Table 12-10

MotorMaster+ Methods

- ORMEL96 Calculates Part Load Efficiency from Measured Slip plus Nameplate Data
- kW Calculates Load; Looks up Part-load Efficiency
- Slip Calculates Load; Looks up Part-load Efficiency
- Amp Calculates Load; Looks up Part-load Efficiency

Failed Motor Efficiency Upgrade

O New Rewind	O Replace Exis	sting		Savi	ngs	Exit	
Utility Puget Power	Motor Description and Features	Re <avg effic<="" std="" th=""><th>wound iency></th><th></th><th>Energy KAvg Energy-E</th><th>y-Efficient (ficient></th><th></th></avg>	wound iency>		Energy KAvg Energy-E	y-Efficient (ficient>	
Schedule 24 - General 💌	Size/Speed	2000 💌 hp	1200	BPM	200 The	1200 💌 RPM	From user-
Facility	Enclosure/Voltage	TEFC 💌	460	✓ Volts	TEFC 💽	460 💽 Volts	editable
Consolidated Foodstuff:	Hours use/yr	8760	Invent	orv	8760	Catalog	default table
	Load (%)	75.0			75.0	Copy Values	uerault table
Energy price (\$/kWh) 0.06097	Efficiency (%)	92.2			95.4		
(47 K 49 (1))	Rewind Effic Loss (%)	1.0					
Demand	Dealer discount (%)				25.0		
(\$/kW)	Price (\$)	2860 (re	wind)		12363		
No rebate program	Motor Rebate (\$)						
in effect	Peak Months	12			12		

50

Functional Motor Efficiency Upgrade

File Savings Help ONew ORewind	Replace Exis					
O New O Rewind	Doplaco Evic					
	Onepiace LXis	sting		Sa <u>v</u> i	ngs 🦉	Exit
Utility Puget Power	Motor Description and Features	Exi <avg efficie<="" std="" th=""><th>sting ency></th><th></th><th>Energy <avg energy-ef<="" th=""><th>-Efficient ficient></th></avg></th></avg>	sting ency>		Energy <avg energy-ef<="" th=""><th>-Efficient ficient></th></avg>	-Efficient ficient>
Schedule 24 - General 💌	Size/Speed	hp	1200	RPM	200 - hp	1200 • RPM
Facility	Enclosure/Voltage	TEFC 🗾	460	Volts	TEFC 🗾	460 Volts
Consolidated Foodstuff:	Hours use/yr	8760	Inver	itory	8760	<u>C</u> atalog
	Load (%)	75.0			75.0	Copy Values
Energy price (\$/kWh) 0.06097	Efficiency (%)	93.2			95.4	A
Demand	Full load RPM					
charge	Old Motor Effic Loss				25.0	
(\$/kW)	Dealer discount (%)				12363	
	Purchase Price (\$)				12363	
Marine Branch and Andrews	Installation Cost (\$) Motor Rebate (\$)					
No rebate program in effect	Peak Months	12			12	

51

Consider discounts, rebates, and other economic factors

Motor Comparison File Savings Help ONew ORewind	O Replace Exi	sting Say	ings	Exit	IRR or	make	
Utility Puget Power 💽 Rate Schedule	Motor Description and Features	Rewound <avg efficiency="" std=""></avg>	Energy <avg energy<="" th=""><th>gy-Efficient -Efficient></th><th>more p econor conside</th><th>nic</th><th>life cycle</th></avg>	gy-Efficient -Efficient>	more p econor conside	nic	life cycle
Schedule 25 - Small De	Size/Speed Enclosure/Voltage	Image: Physical Action hp 1200 Image: Physical Action RPM TEFC Image: Action 460 Volts Volts	200 - h	p 1200 T RPM			
<none></none>	Hours use/yr Load (%)	8760 Inventory 85.0	8760 85.0	Catalog Energy Savings			×
Energy price (\$/kWh) 0.0605 Demand	Efficiency (%) Rewind Effic Loss (%)	91.9 1.0	95.4	File LifeCycle Help	LifeCycle	5?	Exit
charge 5.35 (\$/kW)	Dealer discount (%) Price (\$)	2860 (rewind)	25.0 12363				
No rebate program in effect (* user-defined)	Motor Rebate (\$) Peak Months	12	2200 ,	Motor premium (\$) Energy use (kWh/yr)	1,208,523	7,303	
Perform comparison cal	lculations and view	results		Energy cost (\$/yr) Demand chg (\$/yr)	73,116 8,857	70,454 8,535	
					Energy savings (kWh/yr)	43,996	\$ 2662
					Demand savings (kW)	5.0 tal savings	\$ 322 \$ 2984
					Simp	le payback	2.44 yrs 52

Adding Utility Rate Schedules

Can accommodate two seasons (generally Summer and Winter) Enter demand charges (\$/kW-mo) for each season Enter energy charges for each season. Can handle up to three energy charge "tailblocks". Enter any number of utilities and rate schedules. Assign at Facility Level.

Life Cycle Cost Analysis

Computes the after-tax return-oninvestment in an energy efficiency measure.

Displays cash flows, net present value, and the benefit-to-cost ratio.

Linked to Compare and Batch Analysis modules.

Maintenance Logs

Predictive Maintenance Analysis Parameters □ Image (ance) • Phase Balance A / Resistive unbalance (R) > 0.0 B / Inductive unbalance (L) > C / Impedance unbalance (Z) > C / Impedance unbalance (Z) > Overloaded (Z) >= Ove	otor Inventory Query	, ∞
Predictive Maintenance Analysis Parameters Image: Second Se	le <u>Q</u> uery <u>H</u> elp	
A / Resistive unbalance (R) > 0.0 B / Inductive unbalance (L) > C / Impedance unbalance (Z) > Insulation Resistance Megger < Megger < ODE Bearing A / Vibration (in/sec) > H / Shock pulse carpet (db) > V / Shock pulse max (db) > DE Bearing A / Vibration (in/sec) > Difference A / Vibration (in/sec) >	Predictive Maintenance Analysis Parameters	
A / Vibration (in/sec) > Cancel ar OK Cancel	A / Resistive unbalance (R) > 0.0 B / Inductive unbalance (L) > C / Impedance unbalance (Z) > Insulation Resistance Megger < Megger < Vibration ODE Bearing A / Vibration (in/sec) > H / Shock pulse carpet (db) > V / Shock pulse max (db) >	age unbalance $(%) >=$ d/underloaded $(%) <=$ D verloaded $(%) >=$ Power factor $(%) <=$ under voltage $(%) +/-$ maintenance analysis \square 19es HP range >= <= Departme Feedstocl Productio pwer draw (kW) >= Age (years) >= 1
	A / Vibration (in/sec) >	Cancel ar OK Cancel

Motor Systems Assessment Training

Savings Tracker

Uses "before" and "after" measured values to validate energy and dollar savings from conservation and efficiency improvements.

Motor and driven-equipment Energy Action records are aggregated with total savings indicated.

May create a Greenhouse Gas Emissions Reduction report (EIA 1605 EZ).

Energy Management using Batch Analysis

Use Batch Analysis to determine which inplant motors are candidates for immediate replacement with a new Premium Efficiency motor.

Identify which motors should be replaced at their time of failure.

Know which motors should be repaired and returned to service when they fail.

Batch Analysis Capability

Replacing Groups of Inefficient Motors

 MotorMaster+'s Batch Analysis can accept inputs from the Inventory module, automatically conduct analyses, and then summarizes dollar and energy savings due to changing out all motors (in a given plant, department, etc.) or only those motors with simple paybacks below a target value.

Batch Analysis Choices

Motor Changeout Choices. The analyst can replace existing motors with a particular brand of motor or identify the "best available" replacement motor. This motor yields the most rapid simple payback on investment.

Batch Upgrade Capability. This feature allows the user to specify only severe-duty, NEMA Premium or IEEE 841 replacement motors.

Optimization and Auto Sizing Routine

Identify the "best available" motor. The MotorMaster+ batch analysis will select the "best" replacement motor based on:

- full and part-load efficiency values (bin)
- discounted list price
- centrifugal load speed/slip relationships.

The package of "best" replacement motors provides the quickest overall payback on investment.

Underloaded Motors

Consideration of Oversized and

Underloaded Motors. A motor is considered oversized if it constantly operates at less than 40% of full load. Compares' Auto Downsizing analysis will automatically consider replacement motors of the same size as well as smaller motors.

MotorMaster+ will not allow loads on potential replacement motors to exceed 85%.

How to obtain MotorMaster+

Download from the U.S. Dept. of Energy's ITP website at: http://www1.eere.energy.gov/industry/ bestpractices/software.html#mm

Additional industrial efficiency resources are available at: http://www1.eere.energy.gov/industry/