Fuel Cycle Research and Development: Core Materials Technologies Overview - Fast Reactor and LWR Fuel Cladding

Stuart A. Maloy
Core Materials Technical Lead for Fuels
Los Alamos National Laboratory

DOE NE Materials-Cross-Coordination Webinar
July 30, 2013

LA-UR-13-25972
Contributors

- LANL: Tarik Saleh, Toby Romero, Bill Crooks, Ed Garcia, Rob Aikin jr., Osman Anderoglu, Ming Tang, Sara Perez-Berquist, Mark Bourke, Don Brown, Bjorn Clausen

- PNNL: Mychailo Toloczko, Glenn Grant, David Senor, Jim Buelt

- INL: Jim Cole, Randy Fielding, Jian Gan, Mitch Meyer, Bulent H. Sencer, Emmanuel Perez, Michael Teague

- ORNL: T.S. Byun, David Hoelzer, M. Brady, K. Terrani, M. Fechter, L. Snead, B. Pint

- Techsource: F. Garner

- SDSMT: M. West, B. Jasthi

- ATI Inc.- M. Ferry, Jean Stewart

- TAMU – Haiyan Wang

- UCSB: G.R. Odette

- UCB: P. Hosemann
Advanced Fuels Campaign Mission & Objectives in the Fuel Cycle Research and Development Program

Mission

Develop and demonstrate fabrication processes and in-pile (reactor) performance of advanced fuels/targets (including the cladding) to support the different fuel cycle options defined in the NE roadmap.

Objectives

Development of the fuels/targets that

- Increases the efficiency of nuclear energy production
- Maximize the utilization of natural resources (Uranium, Thorium)
- Minimizes generation of high-level nuclear waste (spent fuel)
- Minimize the risk of nuclear proliferation

Grand Challenges

- Multi-fold increase in fuel burnup over the currently known technologies
- Multi-fold decrease in fabrication losses with highly efficient predictable and repeatable processes
Approach to Enabling a Multi-fold Increase in Fuel Burnup over the Currently Known Technologies

Ultimate goal: Develop advanced materials immune to fuel, neutrons and coolant interactions under specific reactor environments

Coating, Liners, Advanced Alloys

Enhancements with Fabrication Complexity

Different Reactor options to change requirements: LFR, GFR

F/M Steels
HT-9

Advanced F/M Steels, e.g., NF616

ODS Steels

Advanced Alloys

200 dpa, 300 dpa, 400 dpa

500 C, 600 C, 700 C

Reduced embrittlement, swelling, creep

Corrosion

Enhancements with Fabrication Complexity

Temperature

FCCI

Enhancements with Fabrication Complexity

Ultra-high Burnup Fuels

Radiation

F/M Steels

Advanced Alloys

Cr, Si, Al

Increasing content

Enhancements with Fabrication Complexity

Ultimate goal: Develop advanced materials immune to fuel, neutrons and coolant interactions under specific reactor environments
Objectives

- **Qualify HT-9 to Radiation Doses >250 dpa**
 - Test previously irradiated materials (ACO3 duct and FFTF/MOTA specimens)
 - Measure data for model development – rate jump testing
 - Extend irradiation data to higher doses – Re-irradiation of specimens in BOR-60

- **Develop Advanced Radiation Tolerant Materials**
 - High dose irradiation testing
 - High dose ion irradiation testing
 - Scale up ODS processing (15 kg milling runs complete)
 - Tube production and weld development

- **Develop Coatings and liners to prevent FCCI**
 - Diffusion couple test
 - TiN coating on tube
Analysis of Specimens from ACO-3 Duct

- Total specimens = 144 Charpy, 57 compact tension, 126 tensile specimens, 500 TEM
- Charpy and Compact Tension specimens completed testing at ORNL. Thermal annealing testing completed.
- Completed tensile testing from 6 different locations along the duct at 25°C, 200°C and the irradiation temperature.
- Completed Rate Jump Testing at 25°C
- Detailed microstructural analysis performed.
- New specimens EDM machined for BOR-60 Irradiation
Tensile Testing Completed on High Dose Irradiated F/M Steels

- LANL recently shipped samples to Russia for re-irradiation in BOR-60 through CRADA with Terrapower.
- LANL completed rate jump tests on specimens from the ACO-3 duct. Data is being coordinated with model development.

![Stress-strain curves measured on irradiated HT-9 while performing rate jump testing](image)

Diagram showing specimen cut plan from ACO-3 duct for re-irradiation in BOR-60
Study on Annealing Recovery of Fracture Toughness in ACO-3 Duct HT9 by Specimen Reusing Technique

These Charpy specimen halves were reused for J-R tests: annealed, notched, precracked, and fracture (J-R)-tested.
Complete or near-complete recovery of fracture toughness was observed after 650°C annealing. The toughness recovery was particularly strong after low temperature (~380°C) irradiation.

After 650°C annealing a decrease of K_{JQ} occurred when the test temperature > 500°C although the lowest fracture toughness measured at 600°C was still higher than 170 MPa√m.

Thermal annealing treatment can be a mitigation tool against the radiation-induced embrittlement in HT9 steel core.
Objectives

- **Qualify HT-9 to Radiation Doses >250 dpa**
 - Test previously irradiated materials (ACO3 duct and FFTF/MOTA specimens)
 - Measure data for model development – rate jump testing
 - Extend irradiation data to higher doses – Re-irradiation of specimens in BOR-60

- **Develop Advanced Radiation Tolerant Materials**
 - High dose irradiation testing
 - High dose ion irradiation testing
 - Scale up ODS processing (15 kg milling runs complete)
 - Tube production and weld development

- **Develop Coatings and liners to prevent FCCI**
 - Diffusion couple test
 - TiN coating on tube
Analysis of High Dose Neutron Irradiated MA957 Tubing Underway at PNNL

Irradiation conditions
- (385 °C, 18-43 dpa)
- (412 °C, 110 dpa)
- (500-550 °C, 18-113 dpa)
- (600-670 °C, 34-110 dpa)
- (750 °C, 33-120 dpa)

Status
- First set of room temp tensile tests complete.
- Initial microstructural exams using APT complete.
- In-reactor creep and swelling response analyzed.
- 500 dpa ion irradiations complete with measured swelling.

Current post-irradiation results:
- Tensile: No loss in ductility at all but lowest irradiation temperature exhibits higher strength.
- In-Reactor Creep: Comparable to HT-9 in creep resistance to up to 550 °C, much better resistance at 600 °C and higher.
- Swelling: No swelling after 110 dpa neutrons. Slight swelling after 100 dpa ions, 4.5% max swelling after 500 dpa ions:
- Microstructure from APT: See next slide.
Objective – Study microstructure of neutron irradiated ODS ferritic steel, with emphasis on oxide particle morphology.

Material - MA957 from in-reactor pressurized tube creep specimens.

Preliminary APT examinations completed on specimens irradiated at 412, 550, 670, and 750°C to 109-121 dpa.

Initial Results

- MA957 pressurized tubes have a small oxide particle size of ~2 nm similar to newer ODS steels such as 14YWT.
- No obvious ballistic dissolution at these irradiation temperatures, but small difference in oxide particle population at 412°C.
- Cr-rich alpha-prime clusters observed at 412°C irradiation temperature consistent with 14Cr composition.
- Some grain boundary segregation.
Scale Up Production of 14YWT Ferritic Alloy (Heat FCRD-NFA1)

- 4 of 4 ball milling runs completed by Zoz
 - V540-01: 15 kg of coarse (>150 µm) powder
 - V540-02: 15 kg of medium (45-150 µm) and fine (<45 µm) powder
 - V540-03: 15 kg medium, fine and small amount of V540-01 coarse powder
 - V540-04: 15kg medium, fine powder mixed with yttria for the oxide dispersion.

- EPMA showed 40 h ball milling distributed Y uniformly in fine and medium powders
- 40 h ball milling did not distribute Y uniformly in coarse powders
- Mechanical testing underway.

<table>
<thead>
<tr>
<th>Indent no.</th>
<th>HV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>723.57</td>
</tr>
<tr>
<td>2</td>
<td>744.47</td>
</tr>
<tr>
<td>3</td>
<td>726.78</td>
</tr>
<tr>
<td>4</td>
<td>713.14</td>
</tr>
<tr>
<td>5</td>
<td>700.18</td>
</tr>
<tr>
<td>6</td>
<td>768.03</td>
</tr>
</tbody>
</table>

Average = 729.36
STD = 23.99
Development and Characterization of Nanoparticle Strengthened Dual Phase Alloys for High Temperature Nuclear Reactor Applications

To develop high toughness NFAs* for high temperature (700°C) high dose (>300 dpa) applications: 100 MPa√m over the range of RT - 700°C.

Use grain boundary strengthening/modification techniques.

ORNL (TS Byun & D.T. Hoelzer) – KAERI (JH Yoon)

* Nanostructured Ferritic Alloys (NFAs) vs. Oxide Dispersion Strengthened (ODS) Alloys
Two alloy power heats (8 kg each) have been produced by gas atomization process at ATI Powder Metals:
Fe-9Cr-2W-0.4Ti-0.2V-0.12C+0.3Y₂O₃ &
Fe-9Cr-2W-0.4Ti-0.2V-0.05C+0.3Y₂O₃

Two alloy power heats (8 kg each) have been produced by gas atomization process at ATI Powder Metals:
Fe-9Cr-2W-0.4Ti-0.2V-0.12C+0.3Y₂O₃ &
Fe-9Cr-2W-0.4Ti-0.2V-0.05C+0.3Y₂O₃

Goals of Yrs 2 & 3:
• Post-Extrusion TMT Optimization
• Micro & High Temp. Characterization
• Feedbacks for new processing
Fracture toughness can be significantly improved by some controlled rolling, and the K_{JQ} values are as high as those of FM steels.

Further development/optimization of processing is underway.
Fabrication of Cladding Tubes from ODS alloys

- 3 cans were designed and fabricated for producing thick wall tubes from the ODS 14YWT and 9Cr-ODS alloys
- Powder has been ball milled, canned and hot extruded.
- Potential collaboration with Y. de Carlan, CEA, Saclay to produce cladding tubes

High-Precision Tube Roller Pilger equipment at CEA

Objectives

- Qualify HT-9 to Radiation Doses >250 dpa
 - Test previously irradiated materials (ACO3 duct and FFTF/MOTA specimens)
 - Measure data for model development – rate jump testing
 - Extend irradiation data to higher doses – Re-irradiation of specimens in BOR-60

- Develop Advanced Radiation Tolerant Materials
 - High dose irradiation testing
 - High dose ion irradiation testing
 - Scale up ODS processing (15 kg milling runs complete)
 - Tube production and weld development

- Develop Coatings and liners to prevent FCCI
 - Diffusion couple test
 - TiN coating on tube
A customer-designed laser deposition system for inner wall coating of long tube is being used at Texas A&M University for the FY2012 coating work.

Diffusion couple studies on the effect of ceramic coating on suppressing fuel-cladding-chemical-interaction (550 – 600 °C for 12-24 hours)

The effect of a 500 nm thin TiN coating on Fe-Ce interaction (550°C/48 hrs)
Met Level 2 Milestone to Fabricate Coated Cladding Tube for Fuels Irradiation in ATR

TiN Inner coating formed on glass tube to test TiN coating process

Successful run performed on HT-9 tube for ATR irradiation.
Designed a diffusion couple irradiation experiment in ATR (550 °C for 50 days) to meet the temperature and post-irradiation-examination requirements.

Diffusion couple thermal annealing studies on chemical compatibility at the cladding – liner interface (HT-9 vs. V or Zr). (704 – 815 °C for 50-200 hours)
Core Materials Research and Development – 5 Year Plan

FY’11
- STIP-IV (PSI) Specimen PIE
- FFTF (ACO-3 and MOTA) Specimen Analysis
- Re-irradiation of FFTF specimens in BOR-60

FY’12
- Advanced Material Development (improved radiation resistance to >400 dpa)
 - MATRIX-SMI and 2 (Phenix) Specimen PIE
 - Producing ODS Tubing

FY’13
- ODS Ferritic Steel Material Development
- FFTF (ACO-3 and MOTA) Specimen Analysis
- Qualify HT-9 for high dose clad/duct applications (determine design limitations)

FY’14
- Advanced Material Development (improved FCCI resistance to >40% burnup)
 - Develop ODS Tubing and Weld specifications
 - PIE on Lined Irradiated Tube

FY’15
- Development of Coated and Lined Tubes
- Rev. 6 of AFCI (FCRD) Materials Handbook
- Advanced Materials Irradiation in BOR-60 and CEFR

FY’16
- Provides data for NEAMS model development of Cladding

- Data to 250-300 dpa on F/M and 100-150 on Inn. Material

Data on Advanced Materials to 80-100 dpa

Provides data for NEAMS model development of Cladding
Develop and test advanced alloys for Next Generation LWR Fuels with Enhanced Performance and Safety and Reduced Waste Generation

- Low Thermal Neutron Crosssection
 - Element selection (e.g. Zr, Mg)
 - Reduce cladding wall thickness
- Irradiation tolerant to at least 15 dpa
 - Resists swelling and irradiation creep
 - Does not accumulate damage
 - Stable microstructure (resists RIS)
- Mechanically robust under loading and transportation conditions
- Compatibility with Fuel and Coolant
 - Resists stress corrosion cracking
 - Resists accident conditions (e.g. high temperature steam)
 - Resists abnormal coolant changes (e.g. salt water)
- Weldable and Processed into tube form
 - Maintain hermetic seal under normal/off-normal conditions
Objectives

- Measure Kinetics of Oxidation in Steam
 - Steam oxidation testing up to 1300°C (ORNL)
 - Fundamental oxidation studies in steam (LANL)

- Develop Processing Techniques to produce thin-walled tubing
 - Producing tubing of MA-956 with 250 micron thick walls (LANL)
 - Measuring mechanical properties of thin walled tubes (ORNL)
 - Weld development on thin-walled tubing (INL and ORNL)

- Measure Radiation Tolerance of ATF ferritic alloys
 - Ion irradiated materials (LANL)
 - ATR irradiated materials
 - Tensile testing (LANL)
 - Fracture toughness testing (ORNL)

- Developing Improved ATF alloy (ORNL)
 - Weld development for improved ATF alloy (INL)
 - Mechanical testing and ion irradiations (LANL)

- Develop Advanced ATF alloy (LANL)
 - Production of Mo tubing using FB-CVD processing
Properly alloyed metals as protective as Si-based ceramics at 1200° C

- Example from FCRD experiments at 1200° C in steam at 3.4 bar (50 psia) for 8 h
- All low mass gain: 310SS (Cr₂O₃), FeCrAl, Kanthal APMT (Al₂O₃), CVD SiC (SiO₂)

Mass change is net value: oxide growth, spallation (minor) and volatilization

Commercial and model alloys included to fundamentally understand role of composition and minimum amount of Cr (and Al) needed for protective behavior
Measurements on hydrogen evolution performed in steam

- Hydrogen Production begins in Zircaloy-4 at ~700°C and in 304L at ~1000°C
- Similar testing will be performed on all advanced alloys in FY13
Mechanical Property Testing

Both samples have the same OD and wall thickness, and were oxidized at 1200 °C for ~900s

Brittle

Ductile

Ring-compression Load-Displacement curves with Zry-4 oxidized at 1200 °C for CP-ECR=30%

Ring-compression Load-Displacement curves with SS-317 oxidized at 1200 °C for CP-ECR=30%
A series of ~35 conditions has been carried out on silica formers (i.e. SiC) chromia formers (i.e. stainless steels) and alumina former (i.e. alumina forming alloys “AFA’s”).

Results are dependent on temperature, time, pressure, and velocity and therefore the specific beyond LOCA scenario may be critical. However, a subset of attractive materials (CVD and NITE SiC, 310 stainless, and AFA’s) have been identified.

A series of papers have been submitted:

Core Materials Research and Development
ATF Clad Development - 5 Year Plan

Advanced Material Development (improved accident tolerance for LWR’s)

- Oxidation testing in Steam on Advanced Steel Alloys
- Thin walled tube development for advanced steel alloys
- Develop Steel thin-walled tubing
- Oxidation testing in Steam on Advanced Steel Alloys after irradiation
- Qualified weld procedure for thin walled tubing
- Weld development for thin walled tubing
- Report on initial results of LOCA testing on ATF clad materials
- ATR irradiation of ATF cladding with advanced fuels
- Report on irradiation testing of clad materials to at least 15 dpa
- Irradiation testing and PIE on ATF clad materials
- Summary report on corrosion resistance of ATF clad materials
- Corrosion testing on ATF clad materials
- IASCC testing on ATF clad materials

Coordinate and collaborate with ATF fuel development with industry through FOA and NEUP projects including the IRP on development of ATF

FY’12 | FY’13 | FY’14 | FY’15 | FY’16 | FY’17

Final report of LOCA testing on ATF clad materials
Materials Integration and University and International Collaborations

Integrate FCRD Core Materials Activities

- Fuels Core Materials Work- (INL, PNNL, LANL, ORNL, LLNL)
 - Materials teleconferences monthly
- University Materials Research (attend university review, review quarterly progress reports)
 - UCSB- Optimized Compositional Design and Processing-Fabrication Paths for Larger Heats of Nanostructured Ferritic Alloys
 - TAMU-Bulk nanostructured austenitic stainless steels with enhanced radiation tolerance
 - U. Ill Urb/Champaign–Development of Austenitic ODS Strengthened Alloys for Very High Temperature Applications
- ATR Reactor Irradiations (provide materials and preparing to collaborate in testing)

Working group meetings and Workshops

- NE Materials Cross-cut Webinars in August 2012 and July-August 2013

International Collaborations

- INERI-GETMAT- 14Cr ODS material development
- INERI-KAERI- 9Cr ODS material development
- Participant in IAEA Coordinated Research Project on “Benchmarking of Structural Materials Pre-selected for Advanced Nuclear Reactors” – met in Vienna, May 2-6, 2011.
- DOE-CIAE Collaboration – Proposed irradiation in CEFR
- DOE-Russia – Proposed irradiation in BOR-60
- LANL-Terrapower CRADA – proposed irradiation of ACO-3 specimens in BOR-60