

Nuclear Energy Enabling Technologies (NEET)

Advanced Sensors and Instrumentation (ASI) Annual Project Review

Power Harvesting for Sensor Networks Dwight Clayton ORNL

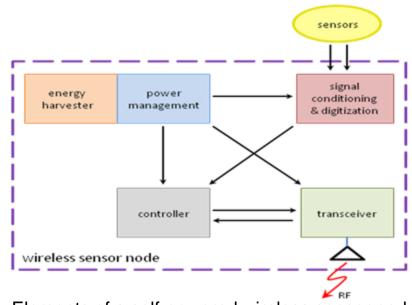
May 21-22, 2013

Project Overview

Nuclear Energy

Goal and Objectives

- The overall goal is to develop and demonstrate an advanced, multifunctional, power-scavenging sensor network system for nuclear power plants.
 - Develop truly wireless sensors (no external power or signal wires)
 - Use ambient energy to power the sensors and electronics
 - Use wireless methods to communicate data from the nodes
 - Enable the cost-effective deployment of larger numbers of sensors that can improve the redundancy, security, and safety of modern reactors
 - The high installation cost of prevents many additional sensors from being deployed
 - The planned self-powered wireless sensor nodes will be easily installed in both new and existing nuclear power plants
 - Wireless sensors addresses part of the physical cable aging issues
- Eventually a Technology Transition plan with the NRC will be needed



Project Overview (continued – 1)

Nuclear Energy

Goal and Objectives (continued)

- Determine the most appropriate power harvesting technique to convert ambient energy to electrical energy
- Develop a system where additional sensors can easily be added
- Determine network architecture best suited for NPP environments
- Design the necessary electronics that minimizes power losses
- Design data transmission protocols that are adaptive, robust, and require little power while still maintaining the necessary amount of information flow

Elements of a self-powered wireless sensor node

Project Overview (continued

Nuclear Energy

Participants

- Performed at ORNL using a diverse set of ORNL staff and facilities
 - Principal Investigator Dwight Clayton

- 2)

- Electronics Design Chuck Britton, Nance Ericson, Dwight Clayton, Andy Andrews, Roberto Lenarduzzi
- Wireless Communications Design Steven Killough, Wayne Manges, Dwight Clayton, Roberto Lenarduzzi, Richard Willems
- Summer Interns as appropriate
- LWRS, SMR, ARC, and NGNP programs will benefit from this work
- The FCRD program could indirectly benefit from this work

Technology Impact

Nuclear Energy

- While power harvesting is starting to be used in some industries, it has not been applied to the nuclear power industry.
- Power harvesting sensor networks can help DOE-NE meet its four primary research objectives as identified in the Nuclear Energy Research and Development Roadmap.
 - Develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of current reactors.
 - Develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration's energy security and climate change goals.
 - Develop sustainable fuel cycles.
 - Understand and minimize the risks of nuclear proliferation and terrorism.

Technology Impact (continued)

Nuclear Energy

Two complementary research areas are being pursued to realize power harvesting sensor networks

- Power harvesting methods in a nuclear power plant environment
 - Survey current state of the practice
 - Determine power density of acceptable harvesting techniques
 - Identify gaps in power harvesting
- Develop highly efficient lower power electronics
 - Design electronics that minimize power losses
 - Design data transmission protocols that are adaptive, robust, and require little power while still maintaining the necessary amount of information flow

Successful completion of this R&D will

- Provide technologies and solutions that can improve the reliability, sustain the safety, and extend the life of current reactors.
- Improve the affordability of new reactors to enable nuclear energy to help meet the Administration's energy security and climate change goals.

Research Plan

Nuclear Energy

Description of technical research (tasks) & planned budget

- FY2012 \$220 K
 - Determined state of the practice in power harvesting techniques
 - Identified power harvesting techniques applicable to nuclear power generation
 - Determined and documented associated power density
 - Issued ORNL/TM-2012/442 Power Harvesting Practices and Technology Gaps for Sensor Networks
- FY2013 \$160 K
 - Determine state of the practice in sensor networks
 - Document communication requirements
 - Develop concept of operation
 - Issue ORNL ORNL/TM-2013/180 Communication Requirements and Concept of Operation for Sensor Networks
- FY2014 \$225 K
 - Develop sensor requirements
 - Begin to investigate power loss in required solid-state devices

Research Plan (continued)

Nuclear Energy

- FY2015 \$250 K
 - Optimize power conversion efficiency
 - Develop methods to minimize power dissipation in solid-state devices
- FY2016 \$250 K
 - Fabricate solid-state device that implements minimized power dissipation
 - Design signal simulator to represent analog signals from sensors
- FY2017 \$675 K
 - Develop data transfer protocols that minimize power consumption
 - Design demonstration system
- FY2018 \$750 K
 - Fabricate demonstration system
 - Evaluate sensors network in a laboratory setting
- FY2019 \$500 K
 - Characterize the performance of a large scale Implementation
 - Draft Technology Transition plan

FY2012 Accomplishments

Nuclear Energy

FY2012 milestones and deliverables

- Determine state of the practice for power harvesting
 - Various energy sources were examined
 - Kinetic
 - » Vibration
 - » Acoustic
 - » Mechanical contact force
 - » Fluid flow
 - Thermal
 - » Thermoelectric spatial temperature gradients
 - » Seebeck effect using bismuth telluride (Bi2Te3) or silicon nanowires
 - » Pyroelectric temporal temperature gradients
 - Radiant
 - » Light
 - » Radio-frequency (rf)
- Identification of power harvesting knowledge gaps
 - Pyroelectric techniques show great promise (5 10 times higher energy density of thermoelectric), but additional R&D is needed
 - Some pyroelectric materials operate at 1200°C

FY2012 Accomplishments (continued – 1)

Nuclear Energy

- Summary of power harvesting practices was delivered in September 2012
 - Wireless sensor networks have proven to be less expensive, more flexible, and more reliable in industrial settings when compared to their wired counterparts
 - NPP facilities are replete with environmental energy sources having potential to power wireless sensor nodes
 - Thermal energy harvesting is an excellent choice for deployment in a NPP environment

	Energy Source	Power Density
Vibration/Motion	Industry	100 μW/cm ²
Temperature Differential	Industry	$1-10 \text{ mW/cm}^2$
Radiant Light	Indoor	$10 \ \mu W/cm^2$
	Outdoor	10 mW/cm^2
Radiant RF	GSM	$0.1 \mu\text{W/cm}^2$
	Wi-Fi	$0.001 \mu\text{W/cm}^2$

FY-2013 Activities

Nuclear Energy

Survey current state of practice in sensor networks

- Mesh networks accommodate sensor data where high-reliability and security are important issues
- Examine commercially available technologies such as "Wireless HART" and ISA100.11a
- Investigate security at the physical layer and authentication at the MAC layer
- Consider both passive and active attacks
 - Passive attacks attempts to retrieve vulnerable information
 - Active attacks attempts to disrupt operation (impersonation and spoofing)
- Many commercially available wireless sensors operate in the unlicensed Industrial, Scientific, and Medical) ISM radio band as defined by the International Telecommunications Union (ITU)

FY-2013 Activities (continued)

Nuclear Energy

Document communication components requirements

- Power restrictions
- Transmission frequency
- Network architecture including how nodes are added
- Capabilities required in each node

Develop a general concept of operation

- Overall architecture
- Describe various modes of operation
 - "Normal"
 - "Off-normal"

Issue ORNLORNL/TM-2013/180 - Communication Requirements and Concept of Operation for Sensor Networks

Planned Accomplishments

Nuclear Energy

FY2014 milestones and deliverables

- Develop sensor requirements
- Develop simulator to represent analog signals from a variety of sensors

FY2015 milestones and deliverables

- Development power management strategies so the wireless sensor nodes can be powered via power harvesting
- Develop methods to minimize power dissipation in solid-state devices

FY2016 milestones and deliverables

- Fabricate solid-state devices that implements minimized power dissipation
- Conceptual system design for a fully functional system capable of surviving in the intended environment.

Planned Accomplishments (continued)

Nuclear Energy

FY2017 milestones and deliverables

- Develop data transfer protocols that minimize power consumption while maintaining required information flow
- Develop a robust, bidirectional demonstration system designed for operation in a highly reflective, under-damped RF environment typical of reactor facilities

FY2018 milestones and deliverables

- Fabricate demonstration system and evaluate in a laboratory environment
- Verify correct functionality of an integrated system electronics, sensor for measuring temperature, and communications

FY2019 milestones and deliverables

- Characterize the performance of a large scale implementation
- Develop draft Technology Transition plan

Crosscutting Benefits

Nuclear Energy

The Light Water Reactor Sustainability (LWRS) will benefit from this R&D through

- Minimizing the need for many power and signal cables to sensors (nonsafety systems)
- Enabling the cost-effective deployment of larger numbers of sensors that can improve the redundancy, security, and safety of modern reactors
- Easily retrofitted for existing nuclear power plants
- Helps to address cable aging concerns
- Self-powered, wireless sensors have the potential to enable monitoring operations, repair, and recovery under a severe accident scenario where local power is lost and human entry is extremely dangerous or not possible.

Crosscutting Benefits (continued – 1)

Nuclear Energy

The Advanced Small Modular Reactor (SMR) Program will benefit from this R&D through

- Addressing the I&C cost (a significant portion is cable and cable installation) for smaller electrical output
- Minimizing the need for many power and signal cables to sensors (nonsafety systems)
- Enabling the cost-effective deployment of larger numbers of sensors that can improve the redundancy, security, and safety of modern reactors (advanced instrumentation and controls)
- Enable prognostics and diagnostics
- Self-powered, wireless sensors have the potential to enable monitoring operations, repair, and recovery under a severe accident scenario where local power is lost and human entry is extremely dangerous or not possible.

Crosscutting Benefits (continued – 2)

Nuclear Energy

Advanced Reactor Concepts (ARC) and Next Generation Nuclear Plant (NGNP) programs will benefit from this R&D through

- Minimizing the need for many power and signal cables to sensors which will reduce capital costs
- Measurement of unique parameters such as erosion/corrosion, chemistry/purity of coolant, etc. can be made wirelessly
- Enabling the cost-effective deployment of larger numbers of sensors that can improve the redundancy, security, and safety of modern reactors
- Can be easily added to new designs of nuclear power plants
- Self-powered, wireless sensors have the potential to enable monitoring operations, repair, and recovery under a station blackout scenario

Crosscutting Benefits (continued – 3)

Nuclear Energy

The Fuel Cycle R&D (FCRD) program could indirectly benefit from this R&D

- Minimize the need for many of the power cables to various replacement and temporary diagnostic sensors
- Could be used to "monitor" used nuclear fuel (UNF) and high-level waste (HLW)
- Could minimize the risks of nuclear proliferation and terrorism
 - During interim storage
 - Recycle processing
 - Long term storage/disposal

Transition to Competitive Research

Nuclear Energy

With just a minimal amount of moving tasks around, this research can be accomplished in two three-year awards.

- Design and development of individual wireless sensor nodes and the supporting technologies
- Development of a demonstration system and development of a Technology Transition plan

FY2014-2016, 3 years, \$1 M

- Develop sensor requirements and sensor simulator
- Develop, design, and fabricate power efficient solid-state devices
- Conceptual system design capable of surviving in the intended environment

FY2017-2019, 3 years, \$1.3 M

- Design demonstration system
- Fabricate demonstration
- Draft Technology Transition Plan

Conclusion

Nuclear Energy

By successfully implementing power harvesting for sensor networks, advanced sensors and instrumentation can be realized that will enable DOE-NE to

- improve the reliability, sustain the safety, and extend the life of current reactors, and
- develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration's energy security and climate change goals.