



#### Nuclear Energy Enabling Technologies (NEET)

### Advanced Sensors and Instrumentation (ASI) Annual Project Review

Embedded I&C for Extreme Environments Roger Kisner Oak Ridge National Laboratory May 21-22, 2013



### **Project Overview**

**Nuclear Energy** 

#### Goal and Objectives

- The overall goal is to demonstrate performance and reliability improvements possible in major **power reactor system** components when sensors and controls are deeply integrated
- Challenge: make desirable functions possible using embedded I&C
  - Railroad AC traction drive locomotives enables 50% thrust increase
  - Industrial tools— Sawstop<sup>®</sup> prevents saw blade amputations
  - Aircraft/Aerospace stabilizing fundamentally unstable wing configuration
- The project will design, fabricate, and demonstrate a reactor coolant pump employing embedded I&C (for multiple reactor types ~700°C)
- This demonstration of prototypic high-temperature cooling pump, useful in its own right, shows a path for future embedded design efforts









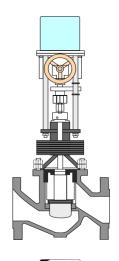
### **Project Overview (2)**

**Nuclear Energy** 

#### Participants — Work performed using ORNL staff and facilities

- Principle Investigator: Roger Kisner
- Control Systems: Alex Melin, David Fugate, Roger Kisner
- Sensor Systems: Roger Kisner, David Holcomb, Tim Burress
- Motor Design: John Miller, Tim Burress
- Mechanical/Hydraulic Systems: Alex Melin
- Magnetic Design: John Wilgen
- Electronics Design: Roger Kisner, David Fugate, Tim Burress
- Material Science: Dane Wilson, David Holcomb
- Summer Interns: Electrical Engineering, Mechanical Engineering

#### LWRS, SMR, ARC, NGNP, and FCT programs will benefit from this work




### **Crosscutting Benefits**

**Nuclear Energy** 

#### Research directly benefits DOE-NE R&D programs and initiatives

- SMRs, Na reactors, gas reactors, and fluoride salt reactors
- LWR Life Extension
- Advanced Reactors (high temperatures)
- Space Power Systems
- Embedding concept is relevant to many components of a nuclear reactor
  - Pumps, control rod drives, valves, circuit breakers, ...
  - Elevates components (and systems) to new levels of performance, stability, diagnostics, and prognostics
  - Applies to primary systems and BOP components
  - New reactor designs and retrofit





# **Crosscutting Benefits (2)**

**Nuclear Energy** 

#### Benefits of embedding are being validated and coordinated

- All nuclear power plant classes require coolant pumps
- Highly relevant demonstration in a representative environment

#### Pump seals and bearings are maintenance intensive

- Pump seals and bearings are have been historic source of problems in nuclear power applications
- Helium circulator seal leaks were a significant source of problems at Fort St. Vrain
- Pump seal leaks were root cause of Simi Valley sodium reactor accident
- Pumps possess large kinetic energy with potential for causing damage

#### What are the outcomes and measures of success

- Demonstration in a coolant loop system
- Future demonstration of embedded I&C in other reactor systems
- Demonstration that embedded I&C makes otherwise unattainable performance in nuclear power components possible



# **Crosscutting Benefits (3)**

**Nuclear Energy** 

#### The Light Water Reactor Sustainability (LWRS) will benefit from this R&D through

Retrofit of components having embedded I&C for extended life, high reliability, and efficiency

#### The Advanced Small Modular Reactor (SMR) Program will benefit from this R&D through

Design of components that are cost effective, low maintenance, and reliable

#### Advanced Reactor Concepts (ARC) and Next Generation Nuclear Plant (NGNP) programs will benefit from this R&D through

Design of components that operate efficiently and reliably in extreme environments

#### The Fuel Cycle Technologies (FCT) program could indirectly benefit from this R&D through

Design of components that are low maintenance and long lived in harsh environments



### **Technology Impact**

#### **Nuclear Energy**

#### Sensors and controls have not typically been embedded in nuclear power reactor components (compared with other industries)

- Advanced I&C technologies were not available in the first nuclear era
- Requires multi-disciplinary design effort I&C, mechanical and electrical engineering, materials science, and systems engineering
- Existing components have limitations for new reactor concepts

#### Required new component concepts may be inherently unstable

- Compact size
- Less bulk material to absorb transients
- Continuous high temperature operation

#### Embedded I&C stabilizes otherwise unstable configurations

- Intimate real-time control
- Reporting of degradation
- Appropriate responses to failure and degradation events
- Opportunity for fault-tolerant control

700°C Canned Rotor



# **Technology Impact (2)**

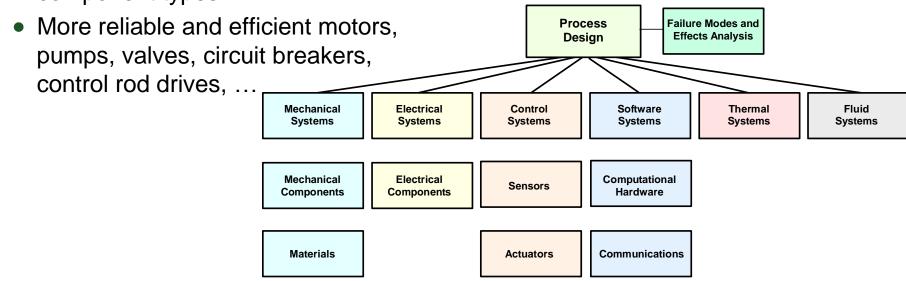
**Nuclear Energy** 

#### Advancing the state-of-the-art in nuclear systems

- Traditional approach to large component design is to include mass, large margins, and tolerate inefficiency as cost of doing business
- Close coupling of I&C with electromechanical system components permits design with minimal mass and appropriate margins leading to lower cost, higher performance, and improved reliability (modern jet engines have experienced a **1000X reliability improvement** with embedded I&C)

#### Embedded I&C can help DOE-NE meet three of four primary research objectives from R&D Roadmap

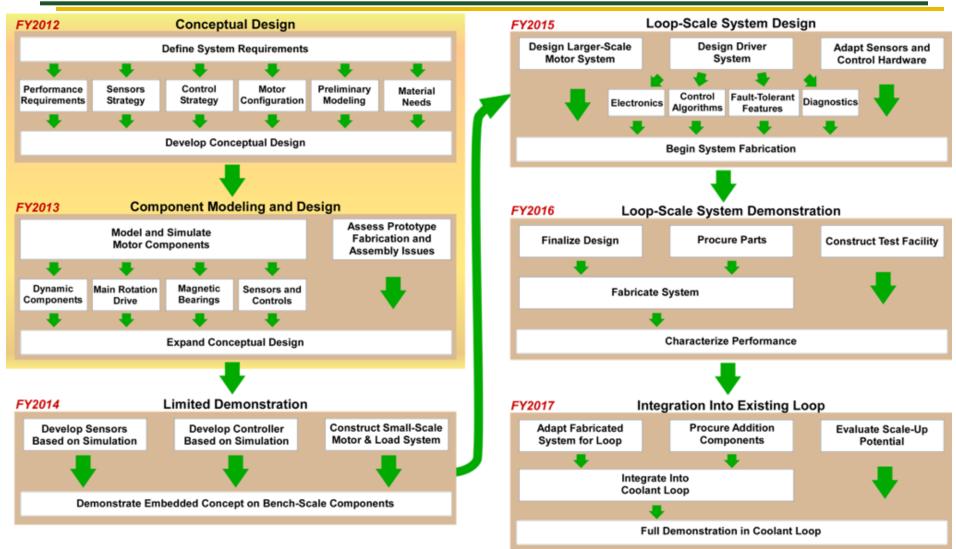
- ✓1. Develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of current reactors
- 2. Develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration's energy security and climate change goals
- ✓ 3. Develop sustainable nuclear fuel cycles
  - 4. Understand and minimize the risks of nuclear proliferation and terrorism




# **Technology Impact (3)**

**Nuclear Energy** 

#### Technology affects the nuclear industry


- Working system demonstration provides needed confidence to allow designers to rely on integrated measurements and controls to provide robustness and efficiency
- Embedding I&C where they have not been before in major components of a nuclear power plant changes capabilities and takes I&C to new level
- Integrated measurement and controls practices can be applied to many component types





### **Planned Progress**

#### **Nuclear Energy**





### **Research Plan** (Original

**Nuclear Energy** 

### ■ FY2012 - \$500 K

- Create implementation plan
- Identify performance requirements for nuclear plant operation

**Proposal**)

- Model preliminary system and its performance
- Investigate material requirements
- Develop conceptual design

#### ■ FY2013 - \$270 K

- Model and simulate motor components
  - dynamic components (rotor assembly)
  - main rotation drive
  - magnetic bearings
  - sensors and controls to simulate the embedded characteristics
- Assess fabrication and assembly issues that apply to prototype construction



### **Research Plan (2)**

**Nuclear Energy** 

#### FY2014 - \$400 K (original plan)

- Develop sensors and controller concept based on simulation results including sensorless position measurement capability
- Construct small-scale (table-top) motor/load
- Demonstrate embedded concept on the small-scale motor

#### FY2015 - \$490 K (original plan)

- Design larger-scale motor system (~10 kW motor)
- Design driver electronics and control algorithms with fault-tolerant features
- Adapt sensors and controller developed previously to larger system
- Begin system fabrication

#### FY2016 - \$500 K (original plan)

- Finalize design and fabricate larger demo system
- Construct testing facility that generates 700°C environment
- Characterize performance of mechanical, sensing, and control systems

#### FY2017 - \$430 K (original plan)

- Integrate demo into coolant loop test facility
- Perform scale-up evaluation



### **FY-2012 Accomplishments**

Status

Torque

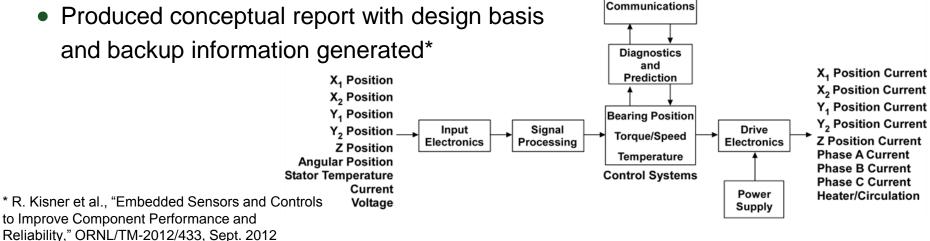
Errors

Preheat

Speed Command

Motor Start (suspension on)

Actual Speed Temperature

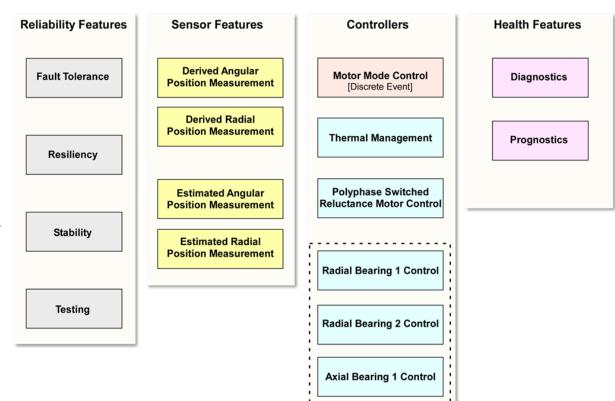

#### Nuclear Energy

#### Established motor performance requirements

- Motor drive configuration determined reluctance drive
- Failure modes and effects analysis was conducted
- Preliminary engineering calculations and modeling performed

#### Conceptual design for embedded I&C components

- Identified significant motor sensor technologies including a sensorless approach
- Developed control strategy
- and backup information generated\*






### FY-2012 Accomplishments (2)

Nuclear Energy

- Identified engineering issues in embedded concept
- Control of coupled response between motor torque and forces on magnetic bearings
- Control of natural oscillatory modes and frequency response of S&C
- Magnetic materials for high temperature environment
- Design for minimizing magnetic gap
- Insulation at high temperatures

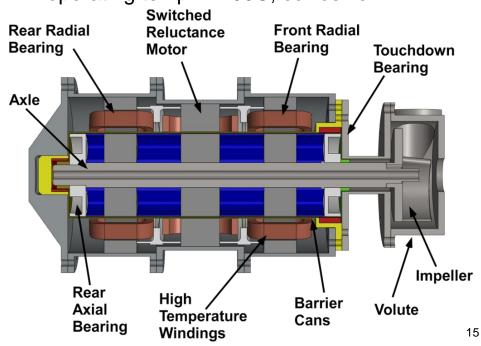


**Axial Bearing 2 Control** 

[MIMO Coupled Control]



### FY-2012 Accomplishments (3)


Nuclear Energy

#### Motor/Pump prototype demonstrates the following

- Coupled, multi-axis, high-speed position control
- Intrinsic sensing in support of operations and maintenance
- Embedded high-temperature sensors
- Fault-tolerant computing and controls including graceful degradation, and
- High-temperature magnetic actuators
- Canned rotor design has no rotating fluid seals
- Unstable without continuous stream of control signals

#### Challenging measurements

- No penetrations (eliminates virtually all conventional sensing methods)
- High temperatures (limits material selection)
- Harsh environment FliNaK (LiF 46.5%, NaF 11.5%, and KF 42%), melt = 459C, operating temp. = 700C, corrosive





### **FY-2013 Activities**

Nuclear Energy

#### Model sensors and controls for canned rotor magnetic system

- PURPOSE: Gain a sufficient understanding of the dynamic mechanical system functioning and potential degradation to create detailed sensor, actuator, and control system
- WORK PRODUCT/DELIVERABLE: Models and simulation results of sensors and controls for the magnetic suspension and drive system
- MILESTONE: September 30, 2013, report

#### Assess methods of fabrication and assembly

- **PURPOSE:** Gain sufficient understanding of materials, methods of fabrication, and methods of system assembly to apply to the creation of detailed sensors, actuators, and control systems as well as machine design
- WORK PRODUCT/DELIVERABLE: Evaluation of effective methods to fabricate motor components and assemble as a working unit
- MILESTONE: July 29, 2013, report



# FY-2013 Activities (2)

**Nuclear Energy** 

#### Working concurrently with ORNL research group investigating reluctance motors for transportation applications

- Hardware is being adapted for bench scale testing
- Investigating the effect of gap and rotor can material (Alloy N)

#### Invited paper for IEEE I&M Magazine\*

- Appearing as a feature article in the June 2013 edition
- Discusses challenges of harsh environments for a canned rotor motor with embedded control



### Planned Accomplishments

**Nuclear Energy** 

#### ■ FY2014

- Sensorless position measurement capability designed and tested
  - Uses actuation magnetics to supplement perhaps replace independent sensors
  - Based on simulation results
- Small-scale (table-top) motor/load constructed
  - Less than 1 kW, not to full operating temperature
  - Main rotation drive with magnetic bearings
  - Capable of modifying motor parameters for simulation results comparison (gap)
  - Electronic drive consisting of IGBJT electronics package and computer for implementing control algorithms
  - Variable load to simulate fluid pumping effects (mechanical motion, fluid dynamics, ...)
- Demonstration of embedded concept on the small-scale motor
  - Sensor and sensorless measurements
  - Steady-state and dynamic behavior
  - Component failures and malfunction



### Planned

### Accomplishments (2)

**Nuclear Energy** 

#### **FY2015**

- Larger-scale motor system designed (~10 kW motor)
  - Scaled-up from laboratory scale experiments using lessons learned and simulation results
  - Fault tolerant embedded control and driver electronics developed
  - Sensors and controller developed previously to the larger system adapted
- Begin system fabrication

#### FY2016

- Final design completed
- Larger demonstration system fabricated
- Test facility that generates 700°C environment constructed
- Characterized performance of mechanical, sensing, and control systems

#### FY2017

- Motor/pump with embedded control are installed in a coolant loop facility for demonstration
- Perform scale-up evaluation



# Transition to Competitive Research

**Nuclear Energy** 

- The project "Embedded Instrumentation and controls for extreme environments" leads to demonstrations showing that embedding I&C in large components is technically possible, achieves desired benefits, and has commercialization potential
  - The challenge is building components with embedded I&C in harsh environments
  - Multidisciplinary process integrates sensors, controls, software, materials, mechanical and electrical design

#### FY2014-2016

- A bench-scale and a loop-scale pump with embedded control is constructed and characterized
- Fault-tolerant control, high efficiency, reliability are demonstrated

#### FY2017-2019

- The demonstration pump system is installed in a high-temperature coolant loop
- Results of the loop experiments become the basis for scaling up the design to power reactor size
- Partner with equipment manufacturers for up-scaling and demonstration
- Additional plant components identified for application of the embedding process



### Transition to Competitive Research (2)

**Nuclear Energy** 

- High value for components in future power plants
- Component lifetime and reliability issues have been a contributor to maintenance costs and failure events since the beginning of nuclear power
- Outcome of this project adds significant value to the nuclear industry
- Project generates significant industry interest to continue
  - Detailed reports made available
  - Key papers
  - Utilities and manufacturers are shown the features and benefits of embedded I&C



### Conclusion

**Nuclear Energy** 

- By successfully demonstrating the performance, reliability, and cost benefits of embedded I&C on a relevant prototypic reactor component, confidence is realized that can lead to major improvements in reactor system components for future plants
  - Improve the reliability, sustain the safety, and extend the life of current reactors
  - Develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration's energy security and climate change goals